湖南省岳陽市汨羅市弼時片區(qū)2025屆九上數(shù)學期末綜合測試模擬試題含解析_第1頁
湖南省岳陽市汨羅市弼時片區(qū)2025屆九上數(shù)學期末綜合測試模擬試題含解析_第2頁
湖南省岳陽市汨羅市弼時片區(qū)2025屆九上數(shù)學期末綜合測試模擬試題含解析_第3頁
湖南省岳陽市汨羅市弼時片區(qū)2025屆九上數(shù)學期末綜合測試模擬試題含解析_第4頁
湖南省岳陽市汨羅市弼時片區(qū)2025屆九上數(shù)學期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖南省岳陽市汨羅市弼時片區(qū)2025屆九上數(shù)學期末綜合測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.在同一平面上,外有一定點到圓上的距離最長為10,最短為2,則的半徑是()A.5 B.3 C.6 D.42.在矩形中,的角平分線與交于點,的角平分線與交于點,若,,則的長為()A. B. C. D.3.已知關(guān)于x的一元二次方程x2﹣4x+c=0的一個根為1,則另一個根是()A.5 B.4 C.3 D.24.如圖,在矩形中,.將向內(nèi)翻折,點落在上,記為,折痕為.若將沿向內(nèi)翻折,點恰好落在上,記為,則的長為()A. B. C. D.5.的相反數(shù)是()A. B. C. D.36.若關(guān)于x的一元二次方程x2+2x﹣m=0的一個根是x=1,則m的值是()A.1 B.2 C.3 D.47.已知:不在同一直線上的三點A,B,C求作:⊙O,使它經(jīng)過點A,B,C作法:如圖,(1)連接AB,作線段AB的垂直平分線DE;(2)連接BC,作線段BC的垂直平分線FG,交DE于點O;(3)以O為圓心,OB長為半徑作⊙O.⊙O就是所求作的圓.根據(jù)以上作圖過程及所作圖形,下列結(jié)論中正確的是()A.連接AC,則點O是△ABC的內(nèi)心 B.C.連接OA,OC,則OA,OC不是⊙的半徑 D.若連接AC,則點O在線段AC的垂直平分線上8.如圖,AB是半圓的直徑,AB=2r,C、D為半圓的三等分點,則圖中陰影部分的面積是()。A.πr2 B.πr2 C.πr2 D.πr29.如圖,OA是⊙O的半徑,弦BC⊥OA,D是優(yōu)弧上一點,如果∠AOB=58o,那么∠ADC的度數(shù)為()A.32o B.29o C.58o D.116o10.如圖,四邊形ABCD內(nèi)接于⊙O,若它的一個外角∠DCE=65°,∠ABC=68°,則∠A的度數(shù)為().A.112° B.68° C.65° D.52°二、填空題(每小題3分,共24分)11.請你寫出一個二次函數(shù),其圖象滿足條件:①開口向下;②與軸的交點坐標為.此二次函數(shù)的解析式可以是______________12.過⊙O內(nèi)一點M的最長弦為10cm,最短弦為8cm,則OM=cm.13.小明和小紅在太陽光下行走,小明身高1.5m,他的影長2.0m,小紅比小明矮30cm,此刻小紅的影長為______m.14.某型號的冰箱連續(xù)兩次降價,每臺售價由原來的2370元降到了1160元,若設平均每次降價的百分率為,則可列出的方程是__________________________________.15.已知正方形ABCD的對角線長為8cm,則正方形ABCD的面積為_____cm1.16.如圖是反比例函數(shù)在第二象限內(nèi)的圖像,若圖中的矩形OABC的面積為2,則k=________.17.如圖,已知點P是△ABC的重心,過P作AB的平行線DE,分別交AC于點D,交BC于點E,作DF//BC,交AB于點F,若四邊形BEDF的面積為4,則△ABC的面積為__________18.如圖,人字梯,的長都為2米.當時,人字梯頂端高地面的高度是____米(結(jié)果精確到.參考依據(jù):,,)三、解答題(共66分)19.(10分)如圖,在Rt△ABC中,∠C=90°,BC=5,AC=12,求∠A的正弦值、余弦值和正切值.20.(6分)如圖,在△ABC中,D為BC邊上的一點,且∠CAD=∠B,CD=4,BD=2,求AC的長21.(6分)已知二次函數(shù)y1=x2+mx+n的圖象經(jīng)過點P(﹣3,1),對稱軸是經(jīng)過(﹣1,0)且平行于y軸的直線.(1)求m,n的值,(2)如圖,一次函數(shù)y2=kx+b的圖象經(jīng)過點P,與x軸相交于點A,與二次函數(shù)的圖象相交于另一點B,若點B與點M(﹣4,6)關(guān)于拋物線對稱軸對稱,求一次函數(shù)的表達式.(3)根據(jù)函數(shù)圖象直接寫出y1>y2時x的取值范圍.22.(8分)如圖⑴,在△ABC中,∠C=90°,AC=8cm,BC=6cm.點M由點B出發(fā)沿BA方向向點A勻速運動,同時點N由點A出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm/s.連接MN,設運動時間為t(s)﹙0<t<4﹚,解答下列問題:⑴設△AMN的面積為S,求S與t之間的函數(shù)關(guān)系式,并求出S的最大值;⑵如圖⑵,連接MC,將△MNC沿NC翻折,得到四邊形MNPC,當四邊形MNPC為菱形時,求t的值;⑶當t的值為,△AMN是等腰三角形.23.(8分)如圖,AB為⊙O的直徑,C為⊙O上一點,∠ABC的平分線交⊙O于點D,DE⊥BC于點E.(1)試判斷DE與⊙O的位置關(guān)系,并說明理由;(2)過點D作DF⊥AB于點F,若BE=3,DF=3,求圖中陰影部分的面積.24.(8分)某同學報名參加校運動會,有以下5個項目可供選擇:徑賽項目:100m,200m,分別用、、表示;田賽項目:跳遠,跳高分別用、表示.該同學從5個項目中任選一個,恰好是田賽項目的概率為______;該同學從5個項目中任選兩個,利用樹狀圖或表格列舉出所有可能出現(xiàn)的結(jié)果,并求恰好是一個田賽項目和一個徑賽項目的概率.25.(10分)如圖,,,,.求和的長.26.(10分)已知:AB⊥BC于B,CD⊥BC于C,AB=4,CD=6,BC=14,點P在BD上移動,當以P,C,D為頂點的三角形與△ABP相似時,求PB的長?

參考答案一、選擇題(每小題3分,共30分)1、D【分析】由點P在圓外,易得到圓的直徑為10-2,然后計算圓的半徑即可.【詳解】解:∵點P在圓外∴圓的直徑為10-2=8∴圓的半徑為4故答案為D.【點睛】本題考查了點與圓的位置關(guān)系,關(guān)鍵是根據(jù)題意確定圓的直徑,是解答本題的關(guān)鍵.2、D【分析】先延長EF和BC,交于點G,再根據(jù)條件可以判斷三角形ABE為等腰直角三角形,并求得其斜邊BE的長,然后根據(jù)條件判斷三角形BEG為等腰三角形,最后根據(jù)△EFD∽△GFC得出CG與DE的倍數(shù)關(guān)系,并根據(jù)BG=BC+CG進行計算即可.【詳解】延長EF和BC,交于點G,∵3DF=4FC,∴,∵矩形ABCD中,∠ABC的角平分線BE與AD交于點E,∴∠ABE=∠AEB=45°,∴AB=AE=7,∴直角三角形ABE中,BE=,又∵∠BED的角平分線EF與DC交于點F,∴∠BEG=∠DEF,∵AD∥BC,∴∠G=∠DEF,∴∠BEG=∠G,∴BG=BE=,∵∠G=∠DEF,∠EFD=∠GFC,∴△EFD∽△GFC,∴,設CG=3x,DE=4x,則AD=7+4x=BC,∵BG=BC+CG,∴7+4x+3x=7,解得x=?1,∴BC=7+4x=7+4?4=3+4,故選:D.【點睛】本題主要考查了矩形、相似三角形以及等腰三角形,解決問題的關(guān)鍵是掌握矩形的性質(zhì):矩形的四個角都是直角,矩形的對邊相等.解題時注意:有兩個角對應相等的兩個三角形相似.3、C【解析】根據(jù)根與系數(shù)的關(guān)系可得出兩根之和為4,從而得出另一個根.【詳解】設方程的另一個根為m,則1+m=4,∴m=3,故選C.【點睛】本題考查了一元二次方程根與系數(shù)的關(guān)系.解答關(guān)于x的一元二次方程x2-4x+c=0的另一個根時,也可以直接利用根與系數(shù)的關(guān)系x1+x2=-解答.4、B【分析】首先根據(jù)矩形和翻折的性質(zhì)得出△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,進而得出∠AED=∠A'ED=∠A'EB=60°,∠ADE=∠A'DE=∠A'DC=30°,判定△DB'A'≌△DCA',DC=DB',得出AE,設AB=DC=x,利用勾股定理構(gòu)建方程,即可得解.【詳解】∵四邊形ABCD為矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,∴∠AED=∠A'ED=∠A'EB=×180°=60°,∴∠ADE=90°﹣∠AED=30°,∠A'DE=90°﹣∠A'EB=30°,∴∠ADE=∠A'DE=∠A'DC=30°,又∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS),∴DC=DB',在Rt△AED中,∠ADE=30°,AD=2,∴AE=,設AB=DC=x,則BE=B'E=x﹣∵AE2+AD2=DE2,∴()2+22=(x+x﹣)2,解得,x1=(負值舍去),x2=,故答案為B.【點睛】本題考查了矩形的性質(zhì),軸對稱的性質(zhì)等,解題關(guān)鍵是通過軸對稱的性質(zhì)證明∠AED=∠A'ED=∠A'EB=60°.5、A【分析】根據(jù)相反數(shù)的意義求解即可.【詳解】的相反數(shù)是-,故選:A.【點睛】本題考查了相反數(shù),在一個數(shù)的前面加上負號就是這個數(shù)的相反數(shù).6、C【分析】根據(jù)一元二次方程的解的定義,把x=1代入方程得1+2﹣m=0,然后解關(guān)于m的一次方程即可.【詳解】解:把x=1代入x2+2x﹣m=0得1+2﹣m=0,解得m=1.故選:C.【點睛】本題考查一元二次的代入求參數(shù),關(guān)鍵在于掌握基本運算方法.7、D【分析】根據(jù)三角形的外心性質(zhì)即可解題.【詳解】A:連接AC,根據(jù)題意可知,點O是△ABC的外心,故A錯誤;B:根據(jù)題意無法證明,故B錯誤;C:連接OA,OC,則OA,OC是⊙的半徑,故C錯誤D:若連接AC,則點O在線段AC的垂直平分線上,故D正確故答案為:D.【點睛】本題考查了三角形的確定即不在一條線上的三個點確定一個圓,這個圓是三角形的外接圓,o是三角形的外心.8、D【分析】連接OC、OD,利用同底等高的三角形面積相等可知陰影部分的面積等于扇形OCD的面積,然后計算扇形面積就可.【詳解】連接OC、OD.∵點C,D為半圓的三等分點,AB=1r,∴∠AOC=∠BOD=∠COD=180°÷3=60°,OA=r.∵OC=OD,∴△COD是等邊三角形,∴∠OCD=60°,∴∠OCD=∠AOC=60°,∴CD∥AB,∴△COD和△CDA等底等高,∴S△COD=S△ACD,∴陰影部分的面積=S扇形CODπr1.故選D.【點睛】本題考查了扇形面積求法,利用已知得出理解陰影部分的面積等于扇形OCD的面積是解題的關(guān)鍵.9、B【分析】根據(jù)垂徑定理可得,根據(jù)圓周角定理可得∠AOB=2∠ADC,進而可得答案.【詳解】解:∵OA是⊙O的半徑,弦BC⊥OA,∴,∴∠ADC=∠AOB=29°.故選B.【點睛】此題主要考查了圓周角定理和垂徑定理,關(guān)鍵是掌握圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.10、C【分析】由四邊形ABCD內(nèi)接于⊙O,可得∠BAD+∠BCD=180°,又由鄰補角的定義,可證得∠BAD=∠DCE.繼而求得答案.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠BAD+∠BCD=180°,∵∠BCD+∠DCE=180°,∴∠A=∠DCE=65°.故選:C.【點睛】此題考查了圓的內(nèi)接四邊形的性質(zhì).注意掌握圓內(nèi)接四邊形的對角互補是解此題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】根據(jù)二次函數(shù)圖像和性質(zhì)得a0,c=3,即可設出解析式.【詳解】解:根據(jù)題意可知a0,c=3,故二次函數(shù)解析式可以是【點睛】本題考查了二次函數(shù)的性質(zhì),屬于簡單題,熟悉概念是解題關(guān)鍵.12、3【解析】試題分析:最長弦即為直徑,最短弦即為以M為中點的弦,所以此時考點:弦心距與弦、半徑的關(guān)系點評:13、1.6【解析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,經(jīng)過物體頂部的太陽光線三者構(gòu)成的兩個直角三角形相似.【詳解】解:根據(jù)題意知,小紅的身高為150-30=120(厘米),設小紅的影長為x厘米則,解得:x=160,∴小紅的影長為1.6米,故答案為1.6【點睛】此題主要考查了平行投影,把實際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程,通過解方程求出的影長,體現(xiàn)了方程的思想.14、【分析】先列出第一次降價后售價的代數(shù)式,再根據(jù)第一次的售價列出第二次降價后售價的代數(shù)式,然后根據(jù)已知條件即可列出方程.【詳解】依題意得:第一次降價后售價為:2370(1-x),

則第二次降價后的售價為:2370(1-x)(1-x)=2370(1-x)2,

故.

故答案為.【點睛】此題考查一元二次方程的運用,解題關(guān)鍵在于要注意題意指明的是降價,應該是1-x而不是1+x.15、31【分析】根據(jù)正方形的對角線相等且互相垂直,正方形是特殊的菱形,菱形的面積等于對角線乘積的一半進行求解即可.【詳解】解:∵四邊形ABCD為正方形,∴AC=BD=8cm,AC⊥BD,∴正方形ABCD的面積=×AC×BD=31cm1,故答案為:31.【點睛】本題考查了求解菱形的面積,屬于簡單題,熟悉求解菱形面積的特殊方法是解題關(guān)鍵.16、-1【解析】解:因為反比例函數(shù),且矩形OABC的面積為1,所以|k|=1,即k=±1,又反比例函數(shù)的圖象在第二象限內(nèi),k<0,所以k=﹣1.故答案為﹣1.17、9【分析】連接CP交AB于點H,利用點P是重心得到=,得出S△DEC=4S△AFD,再由DE//BF證出,由此得到S△DEC=S△ABC,繼而得出S四邊形BEDF=S△ABC,從而求出△ABC的面積.【詳解】如圖,連接CP交AB于點H,∵點P是△ABC的重心,∴,∴,∵DF//BE,∴△AFD∽△DEC,∴S△DEC=4S△AFD,∵DE//BF,∴,△DEC∽△ABC,∴S△ABC=S△DEC,∴S四邊形BEDF=S△ABC,∵四邊形BEDF的面積為4,∴S△ABC=9故答案為:9.【點睛】此題考察相似三角形的判定及性質(zhì),做題中首先明確重心的意義,連接CP交AB于點H是解題的關(guān)鍵,由此得到邊的比例關(guān)系,再利用相似三角形的性質(zhì):面積的比等于相似比的平方推導出幾部分圖形的面積之間的關(guān)系,得到三角形ABC的面積.18、1.5.【分析】在中,根據(jù)銳角三角函數(shù)正弦定義即可求得答案.【詳解】在中,∵,,∴,∴.故答案為1.5.【點睛】本題考查銳角三角函數(shù),解題的關(guān)鍵是熟練運用銳角三角函數(shù)的定義,本題屬于基礎題型.三、解答題(共66分)19、sinA=,cosA=,tanA=.【分析】根據(jù)勾股定理求出AB,根據(jù)銳角三角函數(shù)的定義解答即可.【詳解】由勾股定理得,,則,,.【點睛】本題考查解直角三角形,解題的關(guān)鍵是利用勾股定理求出AB的長.20、【分析】根據(jù)相似三角形的判定定理可得△CAD∽△CBA,列出比例式即可求出AC.【詳解】解:∵CD=4,BD=2,∴BC=CD+BD=6∵∠CAD=∠B,∠C=∠C∴△CAD∽△CBA∴∴解得:或(舍去)即.【點睛】此題考查的是相似三角形的判定及性質(zhì),掌握有兩組對應角相等的兩個三角形相似和相似三角形的對應邊成比例是解決此題的關(guān)鍵.21、(1)1,;(1)y=x+4;(3)x<﹣3或x>1.【分析】(1)將點P(-3,1)代入二次函數(shù)解析式得出3m﹣n=8,然后根據(jù)對稱軸過點(-1,0)得出對稱軸為x=-1,據(jù)此求出m的值,然后進一步求出n的值即可;(1)根據(jù)一次函數(shù)經(jīng)過點P(﹣3,1),得出1=﹣3k+b,且點B與點M(﹣4,6)關(guān)于x=﹣1對稱,所以B(1,6),所以6=1k+b,最后求出k與b的值即可;(3)y1>y1,則說明y1的函數(shù)圖像在y1函數(shù)圖像上方,據(jù)此根據(jù)圖像直接寫出范圍即可.【詳解】(1)由二次函數(shù)經(jīng)過點P(﹣3,1),∴1=9﹣3m+n,∴3m﹣n=8,又∵對稱軸是經(jīng)過(﹣1,0)且平行于y軸的直線,∴對稱軸為x=﹣1,∴﹣=﹣1,∴m=1,∴n=﹣1;(1)∵一次函數(shù)經(jīng)過點P(﹣3,1),∴1=﹣3k+b,∵點B與點M(﹣4,6)關(guān)于x=﹣1對稱,∴B(1,6),∴6=1k+b,∴k=1,b=4,∴一次函數(shù)解析式為y=x+4;(3)由圖象可知,x<﹣3或x>1時,y1>y1.【點睛】本題主要考查了二次函數(shù)的綜合運用,熟練掌握相關(guān)概念是解題關(guān)鍵.22、(1),;(2)t=;(3)或或【分析】(1)如圖過點M作MD⊥AC于點D,利用相似三角形的性質(zhì)求出MD即可解決問題;(2)連接PM,交AC于D,,當四邊形MNPC為菱形時,ND=,即可用t表示AD,再結(jié)合第一問的相似可以用另外一個含t式子表示AD,列方程計算即可;(3)分別用t表示出AP、AQ、PQ,再分三種情況討論:①當AQ=AP②當PQ=AQ③當PQ=AP,再分別計算即可.【詳解】解:⑴過點M作MD⊥AC于點D.∵,;∴AB=10cm.BM=AN=2t∴AM=10-2t.∵△ADM∽△ACB∴即∴∴又∴S的最大值是;⑵連接PM,交AC于D,∵四邊形MNPC是菱形,則MP⊥NC,ND=CD∵CN=8-2t∴ND=4-t∴AD=2t+4-t=t+4由⑴知AD=∴=t+4∴t=;(3)由(1)知,PE=﹣t+3,與(2)同理得:QE=AE﹣AQ=﹣t+4∴PQ===,在△APQ中,①當AQ=AP,即t=5﹣t時,解得:t1=;②當PQ=AQ,即=t時,解得:t2=,t3=5;③當PQ=AP,即=5﹣t時,解得:t4=0,t5=;∵0<t<4,∴t3=5,t4=0不合題意,舍去,∴當t為s或s或s時,△APQ是等腰三角形.【點睛】此題主要考查了相似形綜合,用到的知識點是相似三角形的判定與性質(zhì)、勾股定理、三角形的面積公式以及二次函數(shù)的最值問題,關(guān)鍵是根據(jù)題意做出輔助線,利用數(shù)形結(jié)合思想進行解答.23、(1)DE與⊙O相切,理由見解析;(2)陰影部分的面積為2π﹣.【分析】(1)直接利用角平分線的定義結(jié)合平行線的判定與性質(zhì)得出∠DEB=∠EDO=90°,進而得出答案;(2)利用勾股定理結(jié)合扇形面積求法分別分析得出答案.【詳解】(1)DE與⊙O相切,理由:連接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分線交⊙O于點D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE與⊙O相切;(2)∵∠ABC的平分線交⊙O于點D,DE⊥BE,DF⊥AB,∴DE=DF=3,∵BE=3,∴BD==6,∵sin∠DBF=,∴∠DBA=30°,∴∠DOF=60°,∴sin60°=,∴DO=2,則FO=,故圖中陰影部分的面積為:.【點睛】此題主要考查了切線的判定方法以及扇形面積求法等知識,正確得出DO的長是解題關(guān)鍵.24、(1);(2).【分析】(1)由5個項目中田賽項目有2個,直接利用概率公式求解即可求得答案;(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與恰好是一個田賽

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論