2024年新高考Ⅰ卷真題知識(shí)點(diǎn)平行模擬卷 數(shù)學(xué)(含解析)_第1頁
2024年新高考Ⅰ卷真題知識(shí)點(diǎn)平行模擬卷 數(shù)學(xué)(含解析)_第2頁
2024年新高考Ⅰ卷真題知識(shí)點(diǎn)平行模擬卷 數(shù)學(xué)(含解析)_第3頁
2024年新高考Ⅰ卷真題知識(shí)點(diǎn)平行模擬卷 數(shù)學(xué)(含解析)_第4頁
2024年新高考Ⅰ卷真題知識(shí)點(diǎn)平行模擬卷 數(shù)學(xué)(含解析)_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

新高考Ⅰ卷真題知識(shí)點(diǎn)平行模擬卷(考試時(shí)間:120分鐘試卷滿分:150分)注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑。如需改動(dòng),用橡皮擦干凈后,再選涂其他答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上。寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。4.測(cè)試范圍:新高考全部?jī)?nèi)容。第一部分(選擇題共58分)一、選擇題:本題共8小題,每小題5分,共40分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】解不等式可得集合SKIPIF1<0,進(jìn)而可得SKIPIF1<0.【詳解】SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故選:B.2.設(shè)復(fù)數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【答案】B【分析】借助復(fù)數(shù)的四則運(yùn)算與模長(zhǎng)定義計(jì)算即可得.【詳解】由題意可得SKIPIF1<0,所以SKIPIF1<0.故選:B.3.已知平面向量SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0(

)A.-1 B.-2 C.1 D.2【答案】D【分析】根據(jù)向量的坐標(biāo)運(yùn)算及向量垂直的坐標(biāo)表示求解.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:D4.若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用正弦的差角公式結(jié)合弦切關(guān)系分別計(jì)算SKIPIF1<0,再根據(jù)和角公式計(jì)算即可.【詳解】因?yàn)镾KIPIF1<0,又SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0.故選:D5.如圖,圓錐形脆皮筒上面放半球形的冰淇淋,為了保障冰淇淋融化后能落在脆皮筒里,不溢出來,某規(guī)格的脆皮筒規(guī)定其側(cè)面面積是冰淇淋半球面面積的2倍,則此規(guī)格脆皮筒的體積與冰淇淋的體積之比為(

A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】設(shè)圓錐的半徑為SKIPIF1<0,高為SKIPIF1<0,母線長(zhǎng)為SKIPIF1<0,結(jié)合題意面積比得到SKIPIF1<0,再計(jì)算二者的體積比即可.【詳解】設(shè)圓錐的半徑為SKIPIF1<0,高為SKIPIF1<0,母線長(zhǎng)為SKIPIF1<0,則母線長(zhǎng)為SKIPIF1<0,所以圓錐的側(cè)面積是SKIPIF1<0,半球的面積SKIPIF1<0,由題意可得SKIPIF1<0,解得SKIPIF1<0,所以圓錐的體積為SKIPIF1<0,半球的體積為SKIPIF1<0,所以此規(guī)格脆皮筒的體積與冰淇淋的體積之比為SKIPIF1<0,故選:A.6.已知SKIPIF1<0,函數(shù)SKIPIF1<0是SKIPIF1<0上的減函數(shù),則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)分段函數(shù)的單調(diào)性和指數(shù)函數(shù)的單調(diào)性列出不等式組,解之即可直接得出結(jié)果.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0是減函數(shù),所以SKIPIF1<0.又因?yàn)楹瘮?shù)SKIPIF1<05)SKIPIF1<0圖像的對(duì)稱軸是直線SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.又函數(shù)SKIPIF1<0是SKIPIF1<0上的減函數(shù),所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.故選:A.7.函數(shù)SKIPIF1<0在SKIPIF1<0上的零點(diǎn)個(gè)數(shù)為(

)A.1 B.2 C.3 D.4【答案】C【分析】將函數(shù)SKIPIF1<0在SKIPIF1<0上的零點(diǎn)個(gè)數(shù)問題轉(zhuǎn)化為函數(shù)SKIPIF1<0的圖象的交點(diǎn)的個(gè)數(shù)問題,數(shù)形結(jié)合,可得答案.【詳解】由題意函數(shù)SKIPIF1<0在SKIPIF1<0上的零點(diǎn),即為SKIPIF1<0,即SKIPIF1<0的根,也即函數(shù)SKIPIF1<0的圖象的交點(diǎn)的橫坐標(biāo),作出SKIPIF1<0的圖象如圖示:由圖象可知在SKIPIF1<0上兩函數(shù)圖像有3個(gè)交點(diǎn),故函數(shù)SKIPIF1<0在SKIPIF1<0上的零點(diǎn)個(gè)數(shù)為3,故選:C8.?dāng)?shù)學(xué)家斐波那契在研究兔子繁殖問題時(shí),發(fā)現(xiàn)有這樣一個(gè)數(shù)列SKIPIF1<0:1,1,2,3,5,8…,其中從第3項(xiàng)起,每一項(xiàng)都等于它前面兩項(xiàng)之和,即SKIPIF1<0,SKIPIF1<0,這樣的數(shù)列稱為“斐波那契數(shù)列”.若SKIPIF1<0,則SKIPIF1<0(

)A.175 B.176 C.177 D.178【答案】B【分析】根據(jù)數(shù)列的特點(diǎn),每個(gè)數(shù)等于它前面兩個(gè)數(shù)的和,移項(xiàng)得:SKIPIF1<0SKIPIF1<0,使用累加法求得SKIPIF1<0,然后將SKIPIF1<0中的SKIPIF1<0倍展成和的形式(如SKIPIF1<0)即可求解.【詳解】由從第三項(xiàng)起,每個(gè)數(shù)等于它前面兩個(gè)數(shù)的和,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,將這SKIPIF1<0個(gè)式子左右兩邊分別相加可得:SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0SKIPIF1<0SKIPIF1<0.故選:B.二、選擇題:本題共3小題,每小題6分,共18分.在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求.全部選對(duì)的得6分,部分選對(duì)的得部分分,有選錯(cuò)的得0分.9.隨機(jī)變量SKIPIF1<0,則下列命題中正確的是(

)A.若SKIPIF1<0,則SKIPIF1<0B.隨機(jī)變量X的密度曲線比隨機(jī)變量SKIPIF1<0的密度曲線更“矮胖”C.SKIPIF1<0D.SKIPIF1<0【答案】ABC【分析】根據(jù)給定的正態(tài)分布,利用正態(tài)分布的性質(zhì)逐項(xiàng)判斷作答.【詳解】隨機(jī)變量SKIPIF1<0,對(duì)于A,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故A正確;對(duì)于B,由于SKIPIF1<0,則隨機(jī)變量SKIPIF1<0的密度曲線比隨機(jī)變量SKIPIF1<0的密度曲線更“矮胖”,故B正確;對(duì)于C,SKIPIF1<0,故C正確;對(duì)于D,SKIPIF1<0,而SKIPIF1<0,因此SKIPIF1<0,故D錯(cuò)誤.故選:ABC.10.已知SKIPIF1<0,則下列說法正確的是(

)A.SKIPIF1<0的值域是SKIPIF1<0B.任意SKIPIF1<0且SKIPIF1<0,都有SKIPIF1<0C.任意SKIPIF1<0且SKIPIF1<0,都有SKIPIF1<0D.規(guī)定SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0【答案】BCD【分析】根據(jù)函數(shù)奇偶性和單調(diào)性判斷AB;作出函數(shù)SKIPIF1<0的圖象,結(jié)合圖形即可判斷C;根據(jù)遞推公式可得SKIPIF1<0的表達(dá)式即可判斷D.【詳解】A:SKIPIF1<0,則SKIPIF1<0為奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,故A錯(cuò)誤;B:SKIPIF1<0,則SKIPIF1<0為奇函數(shù),又函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故函數(shù)SKIPIF1<0在R上單調(diào)遞增,故B正確;C:作出函數(shù)SKIPIF1<0的圖象,如圖,由圖可知,函數(shù)SKIPIF1<0上為上凹函數(shù),則對(duì)于SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0為圖中A點(diǎn)對(duì)應(yīng)函數(shù)值,SKIPIF1<0為圖中B點(diǎn)對(duì)應(yīng)函數(shù)值,所以SKIPIF1<0,故C正確;D:由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,故D正確.故選:BCD11.(多選)數(shù)學(xué)中的很多符號(hào)具有簡(jiǎn)潔、對(duì)稱的美感,是形成一些常見的漂亮圖案的基石,也是許多藝術(shù)家設(shè)計(jì)作品的主要幾何元素.如我們熟悉的SKIPIF1<0符號(hào),我們把形狀類似SKIPIF1<0的曲線稱為“SKIPIF1<0曲線”.在平面直角坐標(biāo)系SKIPIF1<0中,把到定點(diǎn)SKIPIF1<0,SKIPIF1<0距離之積等于SKIPIF1<0的點(diǎn)的軌跡稱為“SKIPIF1<0曲線”SKIPIF1<0.已知點(diǎn)SKIPIF1<0是“SKIPIF1<0曲線”SKIPIF1<0上一點(diǎn),下列說法中正確的有()A.“SKIPIF1<0曲線”SKIPIF1<0關(guān)于原點(diǎn)SKIPIF1<0中心對(duì)稱B.SKIPIF1<0C.“SKIPIF1<0曲線”SKIPIF1<0上滿足SKIPIF1<0的點(diǎn)SKIPIF1<0有兩個(gè)D.SKIPIF1<0的最大值為SKIPIF1<0【答案】AB【分析】對(duì)A,設(shè)動(dòng)點(diǎn)SKIPIF1<0,求出軌跡方程判斷A的正誤;對(duì)B,通過三角形等面積法轉(zhuǎn)化求解推出SKIPIF1<0,判斷B的正誤;對(duì)C,通過SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0的中垂線即SKIPIF1<0軸上.說明SKIPIF1<0,即SKIPIF1<0,僅有一個(gè),判斷C的正誤;對(duì)D,因?yàn)镾KIPIF1<0,利用余弦定理得SKIPIF1<0,結(jié)合SKIPIF1<0,得SKIPIF1<0,判斷D的正誤.【詳解】對(duì)A,設(shè)動(dòng)點(diǎn)SKIPIF1<0,由題意可得SKIPIF1<0的軌跡方程為SKIPIF1<0,把SKIPIF1<0關(guān)于原點(diǎn)對(duì)稱的點(diǎn)SKIPIF1<0代入軌跡方程,顯然成立;所以A正確;對(duì)B,因?yàn)镾KIPIF1<0,故SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,故B正確;對(duì)C,若SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0的中垂線即SKIPIF1<0軸上.故此時(shí)SKIPIF1<0,代入SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,僅有一個(gè),故C錯(cuò)誤;對(duì)D,因?yàn)镾KIPIF1<0,故SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,故SKIPIF1<0.即SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0共線時(shí)取等號(hào).故SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故D錯(cuò)誤.故選:AB.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:根據(jù)距離之積的關(guān)系得SKIPIF1<0,根據(jù)多三角形問題,利用互補(bǔ)和余弦定理得SKIPIF1<0.第二部分(非選擇題共92分)三、填空題:本題共3小題,每小題5分,共15分。12.已知F,A分別是雙曲線SKIPIF1<0的左焦點(diǎn)和右頂點(diǎn),過點(diǎn)F作垂直于x軸的直線l,交雙曲線于M,N兩點(diǎn),若SKIPIF1<0,則雙曲線的離心率為.【答案】2【分析】由條件根據(jù)雙曲線的對(duì)稱性可得SKIPIF1<0,從而可求離心率.【詳解】設(shè)SKIPIF1<0,將SKIPIF1<0代入SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,且SKIPIF1<0,由雙曲線的對(duì)稱性可知,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,所以雙曲線的離心率為2,故答案為:2.13.已知曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線與曲線SKIPIF1<0相切,則SKIPIF1<0.【答案】SKIPIF1<0/SKIPIF1<0【分析】根據(jù)導(dǎo)數(shù)的幾何意義可得曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程,再次利用導(dǎo)數(shù)的幾何意義求得SKIPIF1<0的切點(diǎn)SKIPIF1<0,從而得解.【詳解】因?yàn)镾KIPIF1<0的導(dǎo)數(shù)為SKIPIF1<0,則SKIPIF1<0,所以曲線SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0,又切線SKIPIF1<0與曲線SKIPIF1<0相切,設(shè)切點(diǎn)為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以切線斜率為SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.故答案為;SKIPIF1<0.14.九宮格數(shù)獨(dú)游戲是一種訓(xùn)練推理能力的數(shù)字謎題游戲.九宮格分為九個(gè)小宮格,某小九宮格如圖所示,小明需要在9個(gè)小格子中填上1至9中不重復(fù)的整數(shù),小明通過推理已經(jīng)得到了4個(gè)小格子中的準(zhǔn)確數(shù)字,SKIPIF1<0這5個(gè)數(shù)字未知,且SKIPIF1<0為奇數(shù),則SKIPIF1<0的概率為.9SKIPIF1<07SKIPIF1<0SKIPIF1<0SKIPIF1<04SKIPIF1<05【答案】SKIPIF1<0【分析】根據(jù)題意列出這個(gè)試驗(yàn)的等可能結(jié)果,然后求解概率即可;【詳解】這個(gè)試驗(yàn)的等可能結(jié)果用下表表示:abcde216382183661238618328123681632236182381663218638128321683612共有12種等可能的結(jié)果,其中SKIPIF1<0的結(jié)果有8種,所以SKIPIF1<0的概率為SKIPIF1<0.故答案為:SKIPIF1<0.四、解答題:本題共5小題,共77分。解答應(yīng)寫出文字說明、證明過程或演算步棸。15.已知SKIPIF1<0的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,滿足SKIPIF1<0.(1)求角SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的周長(zhǎng).【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)先利用正弦定理化角為邊,再根據(jù)余弦定理即可得解;(2)利用正弦定理求出SKIPIF1<0即可得解.【詳解】(1)因?yàn)镾KIPIF1<0,由正弦定理得SKIPIF1<0,即SKIPIF1<0,整理得SKIPIF1<0,由余弦定理得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0;(2)因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的周長(zhǎng)為SKIPIF1<0.16.已知橢圓C關(guān)于x軸,y軸都對(duì)稱,并且經(jīng)過兩點(diǎn)SKIPIF1<0,SKIPIF1<0.(1)求橢圓C的方程;(2)直線l經(jīng)過橢圓C的左焦點(diǎn)且垂直于橢圓的長(zhǎng)軸,與橢圓C交于D,E兩點(diǎn),求SKIPIF1<0的面積.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)設(shè)出橢圓方程SKIPIF1<0SKIPIF1<0,代入點(diǎn)的坐標(biāo),求出橢圓方程;(2)在第一問的基礎(chǔ)上,得到D?E兩點(diǎn)的坐標(biāo),從而求出三角形的面積.【詳解】(1)依題意,設(shè)橢圓方程為:SKIPIF1<0SKIPIF1<0,則有SKIPIF1<0,解得SKIPIF1<0,所以橢圓方程為SKIPIF1<0.(2)由(1)知,橢圓SKIPIF1<0的左焦點(diǎn)為SKIPIF1<0,直線l的方程為:SKIPIF1<0,將SKIPIF1<0代入SKIPIF1<0中,解得:SKIPIF1<0,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,而點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,所以SKIPIF1<0的面積SKIPIF1<0.17.如圖所示的幾何體是由一個(gè)直三棱柱和半個(gè)圓柱拼接而成.其中,SKIPIF1<0,點(diǎn)SKIPIF1<0為弧SKIPIF1<0的中點(diǎn),且SKIPIF1<0四點(diǎn)共面.(1)證明:SKIPIF1<0四點(diǎn)共面;(2)若平面SKIPIF1<0與平面SKIPIF1<0夾角的余弦值為SKIPIF1<0,求SKIPIF1<0長(zhǎng).【答案】(1)證明見解析;(2)SKIPIF1<0.【分析】(1)連接SKIPIF1<0,由題意可得SKIPIF1<0SKIPIF1<0,根據(jù)平行線性質(zhì)有SKIPIF1<0SKIPIF1<0,即可證結(jié)論;(2)法1:構(gòu)建空間直角坐標(biāo)系,應(yīng)用向量法求面面角列方程求線段長(zhǎng);法2:取SKIPIF1<0中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0,利用線面垂直及面面角定義有SKIPIF1<0是平面SKIPIF1<0與平面SKIPIF1<0所成的夾角,根據(jù)已知列方程求線段長(zhǎng).【詳解】(1)連接SKIPIF1<0,因?yàn)镾KIPIF1<0,所以直棱柱的底面為等腰直角三角形,SKIPIF1<0,在半圓SKIPIF1<0上,SKIPIF1<0是弧SKIPIF1<0中點(diǎn),所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,又SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0四點(diǎn)共面.(2)法1:直棱柱中SKIPIF1<0,以SKIPIF1<0為原點(diǎn),建立如圖空間直角坐標(biāo)系,

設(shè)SKIPIF1<0,則SKIPIF1<0,設(shè)面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,取SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,設(shè)面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,取SKIPIF1<0,所以SKIPIF1<0,平面SKIPIF1<0與平面SKIPIF1<0所成夾角,即SKIPIF1<0與SKIPIF1<0夾角或其補(bǔ)角,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0法2:設(shè)SKIPIF1<0,由(1)知SKIPIF1<0四點(diǎn)共面,則面SKIPIF1<0面SKIPIF1<0.

取SKIPIF1<0中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0面SKIPIF1<0,SKIPIF1<0面SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,SKIPIF1<0面SKIPIF1<0,則SKIPIF1<0平面SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0是銳角.所以SKIPIF1<0是平面SKIPIF1<0與平面SKIPIF1<0所成的夾角,則SKIPIF1<0,所以在RtSKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0中,根據(jù)等面積法SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0.所以SKIPIF1<0.所以SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.18.已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)是否存在SKIPIF1<0,使得曲線SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,若存在,求SKIPIF1<0的值,若不存在,說明理由.(3)證明:SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上不存在極值【答案】(1)SKIPIF1<0(2)存在SKIPIF1<0滿足題意,理由見解析.(3)證明見解析【分析】(1)由題意首先求得導(dǎo)函數(shù)的解析式,然后由導(dǎo)數(shù)的幾何意義確定切線的斜率和切點(diǎn)坐標(biāo),最后求解切線方程即可;(2)首先求得函數(shù)的定義域,由函數(shù)的定義域可確定實(shí)數(shù)SKIPIF1<0的值,進(jìn)一步結(jié)合函數(shù)的對(duì)稱性利用特殊值法可得關(guān)于實(shí)數(shù)SKIPIF1<0的方程,解方程可得實(shí)數(shù)SKIPIF1<0的值,最后檢驗(yàn)所得的SKIPIF1<0是否正確即可;(3)求出函數(shù)的導(dǎo)函數(shù)SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,利用導(dǎo)數(shù)說明函數(shù)的單調(diào)性,即可得到SKIPIF1<0的單調(diào)性,從而得證.【詳解】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,據(jù)此可得SKIPIF1<0,函數(shù)在SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0.(2)令SKIPIF1<0,函數(shù)的定義域滿足SKIPIF1<0,即函數(shù)的定義域?yàn)镾KIPIF1<0,定義域關(guān)于直線SKIPIF1<0對(duì)稱,由題意可得SKIPIF1<0,由對(duì)稱性可知SKIPIF1<0,取SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,經(jīng)檢驗(yàn)SKIPIF1<0滿足題意,故SKIPIF1<0.即存在SKIPIF1<0滿足題意.(3)因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0恒成立,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故函數(shù)SKIPIF1<0在SKIPIF1<0上不存在極值.19.對(duì)于數(shù)列SKIPIF1<0,數(shù)列SKIPIF1<0稱為數(shù)列SKIPIF1<0的差數(shù)列或一階差數(shù)列.SKIPIF1<0差數(shù)列的差數(shù)列,稱為SKIPIF1<0的二階差數(shù)列.一般地,SKIPIF1<0的SKIPIF1<0階差數(shù)列的差數(shù)列,稱為SKIPIF1<0的SKIPIF1<0階差數(shù)列.如果SKIPIF1<0的SKIPIF1<0階差數(shù)列為常數(shù)列,而SKIPIF1<0階差數(shù)列不是常數(shù)列,那么SKIPIF1<0就稱為SKIPIF1<0階等差數(shù)列.(1)已知20,24,26,25,20是一個(gè)SKIPIF1<0階等差數(shù)列SKIPIF1<0的前5項(xiàng).求SKIPIF1<0的值及SKIPIF1<0;(2)證明:二階等差數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0;(3)證明:若數(shù)列SKIPIF1<0是SKIPIF1<0階等差數(shù)列,則SKIPIF1<0的通項(xiàng)公式是SKIPIF1<0的SKIPIF1<0次多項(xiàng)式,即SKIPIF1<0(其中SKIPIF1<0(SKIPIF1<0)為常實(shí)數(shù))【答案】(1)SKIPIF1<0,SKIPIF1<0(2)證明見解析(3)證明見解析【分析】(1)根據(jù)定義直接進(jìn)行求解,得到SKIPIF1<0,并根據(jù)二階差數(shù)列的第4項(xiàng)為SKIPIF1<0,求出一階差數(shù)列的第5項(xiàng)為SKIPIF1<0,得到方程,求出SKIPIF1<0;(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論