2022年河北省石家莊市外國語學(xué)校數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測試題含解析_第1頁
2022年河北省石家莊市外國語學(xué)校數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測試題含解析_第2頁
2022年河北省石家莊市外國語學(xué)校數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測試題含解析_第3頁
2022年河北省石家莊市外國語學(xué)校數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測試題含解析_第4頁
2022年河北省石家莊市外國語學(xué)校數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.在“踐行生態(tài)文明,你我一起行動”主題有獎競賽活動中,班共設(shè)置“生態(tài)知識、生態(tài)技能、生態(tài)習(xí)慣、生態(tài)文化”四個類別的競賽內(nèi)容,如果參賽同學(xué)抽到每一類別的可能性相同,那么小宇參賽時抽到“生態(tài)知識”的概率是()A. B. C. D.2.關(guān)于拋物線的說法中,正確的是()A.開口向下 B.與軸的交點在軸的下方C.與軸沒有交點 D.隨的增大而減小3.如圖,P1、P2、P3是雙曲線上的三點,過這三點分別作y軸的垂線,得到三個三角形,它們分別是△P1A1O、△P2A2O、△P3A30,設(shè)它們的面積分別是S1、S2、S3,則()A.S1<S2<S3B.S2<S1<S3C.S3<S1<S2D.S1=S2=S34.如圖,AB、CD相交于點O,AD∥CB,若AO=2,BO=3,CD=6,則CO等于()A.2.4 B.3 C.3.6 D.45.在平面直角坐標(biāo)系中,點P(m,1)與點Q(﹣2,n)關(guān)于原點對稱,則mn的值是()A.﹣2 B.﹣1 C.0 D.26.在某籃球邀請賽中,參賽的每兩個隊之間都要比賽一場,共比賽36場,設(shè)有x個隊參賽,根據(jù)題意,可列方程為()A. B.C. D.7.如圖,AB是⊙O的直徑,弦CD⊥AB于點E.若AB=8,AE=1,則弦CD的長是()A. B.2 C.6 D.88.如圖,在菱形中,,,是的中點,將繞點逆時針旋轉(zhuǎn)至點與點重合,此時點旋轉(zhuǎn)至處,則點在旋轉(zhuǎn)過程中形成的、線段、點在旋轉(zhuǎn)過程中形成的與線段所圍成的陰影部分的面積為()A. B. C. D.9.如圖,矩形紙片ABCD中,AB=4,AD=3,折疊紙片使AD邊落在對角線BD上,點A落在點A'處,折痕為DG,求AG的長為()A.1.5 B.2 C.2.5 D.310.在一個不透明的盒子中裝有個白球,若于個黃球,它們除顏色不同外,其余均相同.若從中隨機(jī)摸出一個球,它是白球的概率為,則黃球的個數(shù)為()A. B. C. D.二、填空題(每小題3分,共24分)11.將拋物線向右平移2個單位長度,再向上平移1個單位長度,所得拋物線的函數(shù)表達(dá)式是_____.12.一個暗箱里放有a個除顏色外完全相同的球,這a個球中紅球只有3個.若每次將球攪勻后,任意摸出1個球記下顏色再放回暗箱.通過大量重復(fù)摸球試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在20%附近,那么可以推算出a的值大約是_______.13.已知函數(shù),當(dāng)時,函數(shù)值y隨x的增大而增大.14.在平面直角坐標(biāo)系中,直線y=x-2與x軸、y軸分別交于點B、C,半徑為1的⊙P的圓心P從點A(4,m)出發(fā)以每秒個單位長度的速度沿射線AC的方向運(yùn)動,設(shè)點P運(yùn)動的時間為t秒,則當(dāng)t=_____秒時,⊙P與坐標(biāo)軸相切.15.一枚材質(zhì)均勻的骰子,六個面的點數(shù)分別是1,2,3,4,5,6,投這個骰子,擲的的點數(shù)大于4的概率是______________.16.如圖,在Rt△ABC中,∠BAC=90°,且BA=9,AC=12,點D是斜邊BC上的一個動點,過點D分別作DE⊥AB于點E,DF⊥AC于點F,點G為四邊形DEAF對角線交點,則線段GF的最小值為_______.17.如圖,過圓外一點作圓的一條割線交于點,若,,且,則_______.18.已知:如圖,在平面上將繞點旋轉(zhuǎn)到的位置時,,則為__________度.三、解答題(共66分)19.(10分)計算(1)2sin30°-tan60°+tan45°;(2)tan245°+sin230°-3cos230°20.(6分)已知:如圖,△ABC中,∠BAC=90°,AB=AC=1,點D是BC邊上的一個動點(不與B,C點重合),∠ADE=45°.(1)求證:△ABD∽△DCE;(2)設(shè)BD=x,AE=y(tǒng),求y關(guān)于x的函數(shù)關(guān)系式;(3)當(dāng)△ADE是等腰三角形時,請直接寫出AE的長.21.(6分)地下停車場的設(shè)計大大緩解了住宅小區(qū)停車難的問題,如圖是龍泉某小區(qū)的地下停車庫坡道入口的設(shè)計示意圖,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根據(jù)規(guī)定,地下停車庫坡道入口上方要張貼限高標(biāo)志,以便告知駕駛員所駕車輛能否安全駛?cè)耄傉J(rèn)為CD的長就是所限制的高度,而小亮認(rèn)為應(yīng)該以CE的長作為限制的高度.小剛和小亮誰說得對?請你判斷并計算出正確的限制高度.(結(jié)果精確到0.1m,參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)22.(8分)如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+4x+5與y軸交于點A,與x軸的正半軸交于點C.(1)求直線AC解析式;(2)過點A作AD平行于x軸,交拋物線于點D,點F為拋物線上的一點(點F在AD上方),作EF平行于y軸交AC于點E,當(dāng)四邊形AFDE的面積最大時?求點F的坐標(biāo),并求出最大面積;(3)若動點P先從(2)中的點F出發(fā)沿適當(dāng)?shù)穆窂竭\(yùn)動到拋物線對稱軸上點M處,再沿垂直于y軸的方向運(yùn)動到y(tǒng)軸上的點N處,然后沿適當(dāng)?shù)穆窂竭\(yùn)動到點C停止,當(dāng)動點P的運(yùn)動路徑最短時,求點N的坐標(biāo),并求最短路徑長.23.(8分)如圖,在四邊形ABCD中,AD∥BC,AB⊥BD于點B.已知∠A=45°,∠C=60°,,求AD的長.24.(8分)某化肥廠2019年生產(chǎn)氮肥4000噸,現(xiàn)準(zhǔn)備通過改進(jìn)技術(shù)提升生產(chǎn)效率,計劃到2021年生產(chǎn)氮肥4840噸.現(xiàn)技術(shù)攻關(guān)小組按要求給出甲、乙兩種技術(shù)改進(jìn)方案,其中運(yùn)用甲方案能使每年產(chǎn)量增長的百分率相同,運(yùn)用乙方案能使每年增長的產(chǎn)量相同.問運(yùn)用哪一種方案能使2020年氮肥的產(chǎn)量更高?高多少?25.(10分)周老師家的紅心獼猴桃深受廣大顧客的喜愛,獼猴桃成熟上市后,她記錄了15天的銷售數(shù)量和銷售單價,其中銷售單價y(元/千克)與時間第x天(x為整數(shù))的數(shù)量關(guān)系如圖所示,日銷量P(千克)與時間第x天(x為整數(shù))的部分對應(yīng)值如下表所示:(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;(2)從你學(xué)過的函數(shù)中,選擇合適的函數(shù)類型刻畫P隨x的變化規(guī)律,請直接寫出P與x的函數(shù)關(guān)系式及自變量x的取值范圍;(3)求出銷售額W在哪一天達(dá)到最大,最大銷售額是多少元?26.(10分)如圖,折疊邊長為的正方形,使點落在邊上的點處(不與點,重合),點落在點處,折痕分別與邊、交于點、,與邊交于點.證明:(1);(2)若為中點,則;(3)的周長為.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】直接利用概率公式計算得出答案.【詳解】共設(shè)置“生態(tài)知識、生態(tài)技能、生態(tài)習(xí)慣、生態(tài)文化”四個類別的競賽內(nèi)容,參賽同學(xué)抽到每一類別的可能性相同,小宇參賽時抽到“生態(tài)知識”的概率是:.故選B.【點睛】此題主要考查了概率公式,正確掌握概率求法是解題關(guān)鍵.2、C【分析】根據(jù)題意利用二次函數(shù)的性質(zhì),對選項逐一判斷后即可得到答案.【詳解】解:A.,開口向上,此選項錯誤;B.與軸的交點為(0,21),在軸的上方,此選項錯誤;C.與軸沒有交點,此選項正確;D.開口向上,對稱軸為x=6,時隨的增大而減小,此選項錯誤.故選:C.【點睛】本題考查二次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,熟練掌握并利用二次函數(shù)的性質(zhì)解答.3、D【分析】由于P1、P2、P3是同一反比例圖像上的點,則圍成的三角形雖然形狀不同,但面積均為.【詳解】根據(jù)反比例函數(shù)的k的幾何意義,△P1A1O、△P2A2O、△P3A3O的面積相同,均為,所以S1=S2=S3,故選D.【點睛】本題考查反比例函數(shù)系數(shù)k的幾何意義,過同一反比例上的任意一點分別向兩條坐標(biāo)軸作垂線,與坐標(biāo)軸圍成的矩形面積就等于|k|,而圍成的三角形的面積為,本知識點是中考的重要考點,應(yīng)高度關(guān)注.4、C【分析】由平行線分線段成比例定理,得到;利用AO、BO、CD的長度,求出CO的長度,即可解決問題.【詳解】如圖,∵AD∥CB,

∴;

∵AO=2,BO=3,CD=6,

∴,解得:CO=3.6,

故選C.【點睛】本題考查了平行線分線段成比例定理及其應(yīng)用問題.掌握平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例是解題的關(guān)鍵..5、A【分析】已知在平面直角坐標(biāo)系中,點P(m,1)與點Q(﹣2,n)關(guān)于原點對稱,則P和Q兩點橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù)即可求得m,n,進(jìn)而求得mn的值.【詳解】∵點P(m,1)與點Q(﹣2,n)關(guān)于原點對稱∴m=2,n=-1∴mn=-2故選:A【點睛】本題考查了直角坐標(biāo)系中,關(guān)于原點對稱的兩個點的坐標(biāo)特點,它們的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù).6、A【分析】共有x個隊參加比賽,則每隊參加(x-1)場比賽,但2隊之間只有1場比賽,根據(jù)共安排36場比賽,列方程即可.【詳解】解:設(shè)有x個隊參賽,根據(jù)題意,可列方程為:x(x﹣1)=36,故選A.【點睛】此題考查由實際問題抽象出一元二次方程,解題關(guān)鍵在于得到比賽總場數(shù)的等量關(guān)系.7、B【分析】連接OC,根據(jù)垂徑定理和勾股定理,即可得答案.【詳解】連接OC,

∵AB是⊙O的直徑,弦CD⊥AB于點E,AB=8,AE=1,∴,

∴,∴,∴,故選:B.【點睛】本題考查了垂徑定理和勾股定理,解題關(guān)鍵是學(xué)會添加常用輔助線面構(gòu)造直角三角形解決問題.8、C【分析】根據(jù)菱形的性質(zhì)可得AD=AB=4,∠DAB=180°-,AE=,然后根據(jù)旋轉(zhuǎn)的性質(zhì)可得:S△ABE=S△ADF,∠FAE=∠DAB=60°,最后根據(jù)S陰影=S扇形DAB+S△ADF―S△ABE―S扇形FAE即可求出陰影部分的面積.【詳解】解:∵在菱形中,,,是的中點,∴AD=AB=4,∠DAB=180°-,AE=,∵繞點逆時針旋轉(zhuǎn)至點與點重合,此時點旋轉(zhuǎn)至處,∴S△ABE=S△ADF,∠FAE=∠DAB=60°∴S陰影=S扇形DAB+S△ADF―S△ABE―S扇形FAE=S扇形DAB―S扇形FAE==故選:C.【點睛】此題考查的是菱形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)和扇形的面積公式,掌握菱形的性質(zhì)定理、旋轉(zhuǎn)的性質(zhì)和扇形的面積公式是解決此題的關(guān)鍵.9、A【分析】由在矩形紙片ABCD中,AB=4,AD=3,可求得BD的長,由折疊的性質(zhì),即可求得A′B的長,然后設(shè)AG=x,由勾股定理即可得:,解此方程即可求得答案.【詳解】解:∵四邊形ABCD是矩形,∴∴由折疊的性質(zhì),可得:A′D=AD=3,A′G=AG,∴A′B=BD?A′D=5?3=2,設(shè)AG=x,則A′G=x,BG=AB?AG=4?x,在Rt△A′BG中,由勾股定理得:∴解得:∴故選:A.【點睛】考查折疊的性質(zhì),矩形的性質(zhì),勾股定理等知識點,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.10、B【分析】根據(jù)題意可知摸出白球的概率=白球個數(shù)÷白球與黃球的和,代入求x即可.【詳解】解:設(shè)黃球個數(shù)為x,∵在一個不透明的盒子中裝有個白球,若干個黃球,它們除顏色不同外,其余均相同.若從中隨機(jī)摸出一個球,它是白球的概率為,∴=8÷(8+x)∴x=4,經(jīng)檢驗x=4是分式方程的解,故選:B【點睛】本題考查的是利用頻率估計概率,正確理解題意是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】先得出拋物線的頂點坐標(biāo)為(0,0),再利用點的平移規(guī)律得到點(0,0)平移后對應(yīng)的點的坐標(biāo)為(2,1),然后根據(jù)頂點式寫出平移后的拋物線解析式.【詳解】解:拋物線的頂點坐標(biāo)為(0,0),再利用點的平移規(guī)律得到點(0,0)平移后對應(yīng)的點的坐標(biāo)為(2,1),所以平移后的拋物線解析式為:.故答案為:.【點睛】本題考查的知識點是二次函數(shù)圖象與幾何變化,熟記點的平移規(guī)律是解此題的關(guān)鍵.12、15個.【解析】在同樣條件下,大量反復(fù)試驗時,隨機(jī)事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關(guān)系入手,列出方程求解:由題意可得,,解得,a=15(個).13、x≤﹣1.【解析】試題分析:∵=,a=﹣1<0,拋物線開口向下,對稱軸為直線x=﹣1,∴當(dāng)x≤﹣1時,y隨x的增大而增大,故答案為x≤﹣1.考點:二次函數(shù)的性質(zhì).14、1,3,5【分析】設(shè)⊙P與坐標(biāo)軸的切點為D,根據(jù)一次函數(shù)圖象上點的坐標(biāo)特征可得出點A、B、C的坐標(biāo),即可求出AB、AC的長,可得△OBC是等腰直角三角形,分⊙P只與x軸相切、與x軸、y軸同時相切、只與y軸相切三種情況,根據(jù)切線的性質(zhì)和等腰直角三角形的性質(zhì)分別求出AP的長,即可得答案.【詳解】設(shè)⊙P與坐標(biāo)軸的切點為D,∵直線y=x-2與x軸、y軸分別交于點B、C,點A坐標(biāo)為(4,m),∴x=0時,y=-2,y=0時,x=2,x=4時,y=2,∴A(4,2),B(2,0),C(0,-2),∴AB=2,AC=4,OB=OC=2,∴△OBC是等腰直角三角形,∠OBC=45°,①如圖,當(dāng)⊙P只與x軸相切時,∵點D為切點,⊙P的半徑為1,∴PD⊥x軸,PD=1,∴△BDP是等腰直角三角形,∴BD=PD=1,∴BP=,∴AP=AB-BP=,∵點P的速度為個單位長度,∴t=1,②如圖,⊙P與x軸、y軸同時相切時,同①得PB=,∴AP=AB+PB=3,∵點P的速度為個單位長度,∴t=3.③如圖,⊙P只與y軸相切時,同①得PB=,∴AP=AC+PB=5,∵點P的速度為個單位長度,∴t=5.綜上所述:t的值為1、3、5時,⊙P與坐標(biāo)軸相切,故答案為:1,3,5【點睛】本題考查切線的性質(zhì)及一次函數(shù)圖象上點的坐標(biāo)特征,一次函數(shù)圖象上的點的坐標(biāo)都適合該一次函數(shù)的解析式;圓的切線垂直于過切點的直徑;熟練掌握切線的性質(zhì)是解題關(guān)鍵.15、【解析】先求出點數(shù)大于4的數(shù),再根據(jù)概率公式求解即可.【詳解】在這6種情況中,擲的點數(shù)大于4的有2種結(jié)果,擲的點數(shù)大于4的概率為.故答案為:.【點睛】本題考查的是概率公式,熟記隨機(jī)事件的概率事件可能出現(xiàn)的結(jié)果數(shù)所有可能出現(xiàn)的結(jié)果數(shù)的商是解答此題的關(guān)鍵.16、【分析】由勾股定理求出BC的長,再證明四邊形DEAF是矩形,可得EF=AD,根據(jù)垂線段最短和三角形面積即可解決問題.【詳解】解:∵∠BAC=90°,且BA=9,AC=12,

∴在Rt△ABC中,利用勾股定理得:BC===15,

∵DE⊥AB,DF⊥AC,∠BAC=90°

∴∠DEA=∠DFA=∠BAC=90°,

∴四邊形DEAF是矩形,

∴EF=AD,GF=EF

∴當(dāng)AD⊥BC時,AD的值最小,

此時,△ABC的面積=AB×AC=BC×AD,

∴AD===,

∴EF=AD=,因此EF的最小值為;又∵GF=EF∴GF=×=

故線段GF的最小值為:.【點睛】本題考查了矩形的判定和性質(zhì)、勾股定理、三角形面積、垂線段最短等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.17、1【分析】作OD⊥AB于D,由垂徑定理得出AD=BD,由三角函數(shù)定義得出sin∠OAB=,設(shè)OD=4x,則OC=OA=5x,OP=3+5x,由勾股定理的AD=3x,由含30角的直角三角形的性質(zhì)得出OP=2OD,得出方程3+5x=2×4x,解得x=1,得出BD=AD=3即可.【詳解】作OD⊥AB于D,如圖所示:則AD=BD,∵sin∠OAB=,∴設(shè)OD=4x,則OC=OA=5x,OP=3+5x,AD==3x,∵∠OPA=30,∴OP=2OD,∴3+5x=2×4x,解得:x=1,∴BD=AD=3,∴AB=1;故答案為:1.【點睛】本題看了垂徑定理、勾股定理、三角函數(shù)定義等知識;熟練掌握垂徑定理和勾股定理是解題的關(guān)鍵.18、1【分析】結(jié)合旋轉(zhuǎn)前后的兩個圖形全等的性質(zhì)以及平行線的性質(zhì),進(jìn)行計算.【詳解】解:∵AA′∥BC,

∴∠A′AB=∠ABC=65°.

∵BA′=AB,

∴∠BA′A=∠BAA′=65°,

∴∠ABA′=1°,

又∵∠A′BA+∠ABC'=∠CBC'+∠ABC',

∴∠CBC′=∠ABA′=1°.

故答案為:1.【點睛】本題考查旋轉(zhuǎn)的性質(zhì)以及平行線的性質(zhì).解題時注意:對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.三、解答題(共66分)19、(1)2-;(2)-.

【解析】(1)直接利用特殊角的三角函數(shù)值代入即可求出答案;(2)直接利用特殊角的三角函數(shù)值代入即可求出答案.【詳解】解:(1)2sin30°-tan60°+tan45°

=2×-+1

=2-;

(2)tan245°+sin230°-3cos230°

=×12+()2-3×()2

=+-

=-.

故答案為:(1)2-;(2)-.【點睛】本題考查特殊角的三角函數(shù)值,正確記憶相關(guān)數(shù)據(jù)是解題的關(guān)鍵.20、(1)證明見解析;(2)y=x2-x+1=(x-)2+;(3)AE的長為2-或.【分析】(1)根據(jù)等腰直角三角形的性質(zhì)及三角形內(nèi)角與外角的關(guān)系,易證△ABD∽△DCE.

(2)由△ABD∽△DCE,對應(yīng)邊成比例及等腰直角三角形的性質(zhì)可求出y與x的函數(shù)關(guān)系式;

(3)當(dāng)△ADE是等腰三角形時,因為三角形的腰和底不明確,所以應(yīng)分AD=DE,AE=DE,AD=AE三種情況討論求出滿足題意的AE的長即可.【詳解】(1)證明:

∵∠BAC=90°,AB=AC

∴∠B=∠C=∠ADE=45°

∵∠ADC=∠B+∠BAD=∠ADE+∠CDE

∴∠BAD=∠CDE

∴△ABD∽△DCE;

(2)由(1)得△ABD∽△DCE,

∴=,

∵∠BAC=90°,AB=AC=1,

∴BC=,CD=-x,EC=1-y,

∴=,

∴y=x2-x+1=(x-)2+;

(3)當(dāng)AD=DE時,△ABD≌△CDE,

∴BD=CE,

∴x=1-y,即x-x2=x,

∵x≠0,

∴等式左右兩邊同時除以x得:x=-1

∴AE=1-x=2-,

當(dāng)AE=DE時,DE⊥AC,此時D是BC中點,E也是AC的中點,

所以,AE=;

當(dāng)AD=AE時,∠DAE=90°,D與B重合,不合題意;

綜上,在AC上存在點E,使△ADE是等腰三角形,

AE的長為2-或.【點睛】本題考查相似三角形的性質(zhì)、等腰直角三角形的性質(zhì)、等腰三角形的判定和性質(zhì)、二次函數(shù)的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會構(gòu)建二次函數(shù)解決最值問題,學(xué)會用分類討論的思想思考問題,屬于中考壓軸題.21、小亮說的對,CE為2.6m.【解析】先根據(jù)CE⊥AE,判斷出CE為高,再根據(jù)解直角三角形的知識解答.【詳解】解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,∵tan∠BAD=BDBA∴BD=10×tan18°,∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),在△ABD中,∠CDE=90°﹣∠BAD=72°,∵CE⊥ED,∴sin∠CDE=CECD∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),∵2.6m<2.7m,且CE⊥AE,∴小亮說的對.答:小亮說的對,CE為2.6m.【點睛】本題主要考查了解直角三角形的應(yīng)用,主要是正弦、正切概念及運(yùn)算,解決本題的關(guān)鍵把實際問題轉(zhuǎn)化為數(shù)學(xué)問題.22、(1)y=﹣x+5;(2)點F(,);四邊形AFDE的面積的最大值為;(3)點N(0,),點P的運(yùn)動路徑最短距離=2+.【分析】(1)先求出點A,點C坐標(biāo),用待定系數(shù)法可求解析式;(2)先求出點D坐標(biāo),設(shè)點F(x,﹣x2+4x+5),則點E坐標(biāo)為(x,﹣x+5),即可求EF=﹣x2+5x,可求四邊形AFDE的面積,由二次函數(shù)的性質(zhì)可求解;(3)由動點P的運(yùn)動路徑=FM+MN+NC=GM+2+MH,則當(dāng)點G,點M,點H三點共線時,動點P的運(yùn)動路徑最小,由兩點距離公式可求解.【詳解】解:(1)∵拋物線y=﹣x2+4x+5與y軸交于點A,與x軸的正半軸交于點C.∴當(dāng)x=0時,y=5,則點A(0,5)當(dāng)y=0時,0=﹣x2+4x+5,∴x1=5,x2=﹣1,∴點B(﹣1,0),點C(5,0)設(shè)直線AC解析式為:y=kx+b,∴解得:∴直線AC解析式為:y=﹣x+5,(2)∵過點A作AD平行于x軸,∴點D縱坐標(biāo)為5,∴5=﹣x2+4x+5,∴x1=0,x2=4,∴點D(4,5),∴AD=4設(shè)點F(x,﹣x2+4x+5),則點E坐標(biāo)為(x,﹣x+5)∴EF=﹣x2+4x+5﹣(﹣x+5)=﹣x2+5x,∵四邊形AFDE的面積=AD×EF=2EF=﹣2x2+10x=﹣2(x﹣)2+∴當(dāng)x=時,四邊形AFDE的面積的最大值為,∴點F(,);(3)∵拋物線y=﹣x2+4x+5=﹣(x﹣2)2+9,∴對稱軸為x=2,∴MN=2,如圖,將點C向右平移2個單位到點H(7,0),過點F作對稱軸x=2的對稱點G(,),連接GH,交直線x=2于點M,∵M(jìn)N∥CH,MN=CH=2,∴四邊形MNCH是平行四邊形,∴NC=MH,∵動點P的運(yùn)動路徑=FM+MN+NC=GM+2+MH,∴當(dāng)點G,點M,點H三點共線時,動點P的運(yùn)動路徑最小,∴動點P的運(yùn)動路徑最短距離=2+=2+,設(shè)直線GH解析式為:y=mx+n,∴,解得,∴直線GH解析式為:y=﹣x+,當(dāng)x=2時,y=,∴點N(0,).【點睛】此題是二次函數(shù)綜合題,主要考查了待定系數(shù)法求解析式,函數(shù)極值的確定方法,兩點距離公式等知識,解題的關(guān)鍵是學(xué)會利用對稱解決最短問題.23、.【分析】過點D作DE⊥BC于E,在Rt△CDE中,∠C=60°,,則可求出DE,由已知可推出∠DBE=∠ADB=45°,根據(jù)直解三角形的邊角關(guān)系依次求出BD,AD即可.【詳解】過點D作DE⊥BC于E∵在Rt△CDE中,∠C=60°,,∴,∵AB⊥BD,∠A=45°,∴∠ADB=45°.∵AD∥BC,∴∠DBE=∠ADB=45°

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論