廣東省汕頭市潮南區(qū)重點(diǎn)名校2024屆中考數(shù)學(xué)猜題卷含解析_第1頁
廣東省汕頭市潮南區(qū)重點(diǎn)名校2024屆中考數(shù)學(xué)猜題卷含解析_第2頁
廣東省汕頭市潮南區(qū)重點(diǎn)名校2024屆中考數(shù)學(xué)猜題卷含解析_第3頁
廣東省汕頭市潮南區(qū)重點(diǎn)名校2024屆中考數(shù)學(xué)猜題卷含解析_第4頁
廣東省汕頭市潮南區(qū)重點(diǎn)名校2024屆中考數(shù)學(xué)猜題卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣東省汕頭市潮南區(qū)重點(diǎn)名校2024屆中考數(shù)學(xué)猜題卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.魏晉時(shí)期的數(shù)學(xué)家劉徽首創(chuàng)割圓術(shù).為計(jì)算圓周率建立了嚴(yán)密的理論和完善的算法.作圓內(nèi)接正多邊形,當(dāng)正多邊形的邊數(shù)不斷增加時(shí),其周長(zhǎng)就無限接近圓的周長(zhǎng),進(jìn)而可用來求得較為精確的圓周率.祖沖之在劉徽的基礎(chǔ)上繼續(xù)努力,當(dāng)正多邊形的邊數(shù)增加24576時(shí),得到了精確到小數(shù)點(diǎn)后七位的圓周率,這一成就在當(dāng)時(shí)是領(lǐng)先其他國家一千多年,如圖,依據(jù)“割圓術(shù)”,由圓內(nèi)接正六邊形算得的圓周率的近似值是()A.0.5 B.1 C.3 D.π2.根據(jù)如圖所示的程序計(jì)算函數(shù)y的值,若輸入的x值是4或7時(shí),輸出的y值相等,則b等于()A.9 B.7 C.﹣9 D.﹣73.下列四個(gè)幾何體中,主視圖與左視圖相同的幾何體有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)4.若一個(gè)正多邊形的每個(gè)內(nèi)角為150°,則這個(gè)正多邊形的邊數(shù)是()A.12 B.11 C.10 D.95.下列運(yùn)算正確的是()A.x4+x4=2x8B.(x2)3=x5C.(x﹣y)2=x2﹣y2D.x3?x=x46.下列各數(shù):1.414,,﹣,0,其中是無理數(shù)的為()A.1.414 B. C.﹣ D.07.下列標(biāo)志中,可以看作是軸對(duì)稱圖形的是()A. B. C. D.8.二次函數(shù)的圖象如圖所示,則反比例函數(shù)與一次函數(shù)在同一坐標(biāo)系中的大致圖象是()A. B. C. D.9.在一次數(shù)學(xué)答題比賽中,五位同學(xué)答對(duì)題目的個(gè)數(shù)分別為7,5,3,5,10,則關(guān)于這組數(shù)據(jù)的說法不正確的是()A.眾數(shù)是5 B.中位數(shù)是5 C.平均數(shù)是6 D.方差是3.610.一個(gè)圓錐的側(cè)面積是12π,它的底面半徑是3,則它的母線長(zhǎng)等于()A.2B.3C.4D.6二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.隨意的拋一粒豆子,恰好落在圖中的方格中(每個(gè)方格除顏色外完全相同),那么這粒豆子落在黑色方格中的可能性是_____.12.已知關(guān)于x的方程x2﹣2x+n=1沒有實(shí)數(shù)根,那么|2﹣n|﹣|1﹣n|的化簡(jiǎn)結(jié)果是_____.13.已知x1,x2是方程x2+6x+3=0的兩實(shí)數(shù)根,則的值為_____.14.據(jù)報(bào)道,截止2018年2月,我國在澳大利亞的留學(xué)生已經(jīng)達(dá)到17.3萬人,將17.3萬用科學(xué)記數(shù)法表示為__________.15.已知一個(gè)斜坡的坡度,那么該斜坡的坡角的度數(shù)是______.16.已知方程x2﹣5x+2=0的兩個(gè)解分別為x1、x2,則x1+x2﹣x1?x2的值為______.三、解答題(共8題,共72分)17.(8分)某天,甲、乙、丙三人一起乘坐公交車,他們上車時(shí)發(fā)現(xiàn)公交車上還有A,B,W三個(gè)空座位,且只有A,B兩個(gè)座位相鄰,若三人隨機(jī)選擇座位,試解決以下問題:(1)甲選擇座位W的概率是多少;(2)試用列表或畫樹狀圖的方法求甲、乙選擇相鄰座位A,B的概率.18.(8分)矩形ABCD中,DE平分∠ADC交BC邊于點(diǎn)E,P為DE上的一點(diǎn)(PE<PD),PM⊥PD,PM交AD邊于點(diǎn)M.(1)若點(diǎn)F是邊CD上一點(diǎn),滿足PF⊥PN,且點(diǎn)N位于AD邊上,如圖1所示.求證:①PN=PF;②DF+DN=DP;(2)如圖2所示,當(dāng)點(diǎn)F在CD邊的延長(zhǎng)線上時(shí),仍然滿足PF⊥PN,此時(shí)點(diǎn)N位于DA邊的延長(zhǎng)線上,如圖2所示;試問DF,DN,DP有怎樣的數(shù)量關(guān)系,并加以證明.19.(8分)如圖所示,在正方形ABCD中,E,F(xiàn)分別是邊AD,CD上的點(diǎn),AE=ED,DF=DC,連結(jié)EF并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)G,連結(jié)BE.求證:△ABE∽△DEF.若正方形的邊長(zhǎng)為4,求BG的長(zhǎng).20.(8分)如圖,在菱形ABCD中,對(duì)角線AC與BD交于點(diǎn)O.過點(diǎn)C作BD的平行線,過點(diǎn)D作AC的平行線,兩直線相交于點(diǎn)E.求證:四邊形OCED是矩形;若CE=1,DE=2,ABCD的面積是.21.(8分)已知,在菱形ABCD中,∠ADC=60°,點(diǎn)H為CD上任意一點(diǎn)(不與C、D重合),過點(diǎn)H作CD的垂線,交BD于點(diǎn)E,連接AE.(1)如圖1,線段EH、CH、AE之間的數(shù)量關(guān)系是;(2)如圖2,將△DHE繞點(diǎn)D順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E、H、C在一條直線上時(shí),求證:AE+EH=CH.22.(10分)如圖1,拋物線y=ax2+bx﹣2與x軸交于點(diǎn)A(﹣1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過點(diǎn)B的直線交y軸于點(diǎn)E(0,2).(1)求該拋物線的解析式;(2)如圖2,過點(diǎn)A作BE的平行線交拋物線于另一點(diǎn)D,點(diǎn)P是拋物線上位于線段AD下方的一個(gè)動(dòng)點(diǎn),連結(jié)PA,EA,ED,PD,求四邊形EAPD面積的最大值;(3)如圖3,連結(jié)AC,將△AOC繞點(diǎn)O逆時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)中的三角形為△A′OC′,在旋轉(zhuǎn)過程中,直線OC′與直線BE交于點(diǎn)Q,若△BOQ為等腰三角形,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo).23.(12分)如圖,數(shù)軸上的點(diǎn)A、B、C、D、E表示連續(xù)的五個(gè)整數(shù),對(duì)應(yīng)數(shù)分別為a、b、c、d、e.(1)若a+e=0,則代數(shù)式b+c+d=;(2)若a是最小的正整數(shù),先化簡(jiǎn),再求值:a+1a-2(3)若a+b+c+d=2,數(shù)軸上的點(diǎn)M表示的實(shí)數(shù)為m(m與a、b、c、d、e不同),且滿足MA+MD=3,則m的范圍是.24.某商城銷售A,B兩種自行車型自行車售價(jià)為2

100元輛,B型自行車售價(jià)為1

750元輛,每輛A型自行車的進(jìn)價(jià)比每輛B型自行車的進(jìn)價(jià)多400元,商城用80

000元購進(jìn)A型自行車的數(shù)量與用64

000元購進(jìn)B型自行車的數(shù)量相等.求每輛A,B兩種自行車的進(jìn)價(jià)分別是多少?現(xiàn)在商城準(zhǔn)備一次購進(jìn)這兩種自行車共100輛,設(shè)購進(jìn)A型自行車m輛,這100輛自行車的銷售總利潤(rùn)為y元,要求購進(jìn)B型自行車數(shù)量不超過A型自行車數(shù)量的2倍,總利潤(rùn)不低于13

000元,求獲利最大的方案以及最大利潤(rùn).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

連接OC、OD,根據(jù)正六邊形的性質(zhì)得到∠COD=60°,得到△COD是等邊三角形,得到OC=CD,根據(jù)題意計(jì)算即可.【詳解】連接OC、OD,∵六邊形ABCDEF是正六邊形,∴∠COD=60°,又OC=OD,∴△COD是等邊三角形,∴OC=CD,正六邊形的周長(zhǎng):圓的直徑=6CD:2CD=3,故選:C.【點(diǎn)睛】本題考查的是正多邊形和圓,掌握正多邊形的中心角的計(jì)算公式是解題的關(guān)鍵.2、C【解析】

先求出x=7時(shí)y的值,再將x=4、y=-1代入y=2x+b可得答案.【詳解】∵當(dāng)x=7時(shí),y=6-7=-1,∴當(dāng)x=4時(shí),y=2×4+b=-1,解得:b=-9,故選C.【點(diǎn)睛】本題主要考查函數(shù)值,解題的關(guān)鍵是掌握函數(shù)值的計(jì)算方法.3、D【解析】解:①正方體的主視圖與左視圖都是正方形;②球的主視圖與左視圖都是圓;③圓錐主視圖與左視圖都是三角形;④圓柱的主視圖和左視圖都是長(zhǎng)方形;故選D.4、A【解析】

根據(jù)正多邊形的外角與它對(duì)應(yīng)的內(nèi)角互補(bǔ),得到這個(gè)正多邊形的每個(gè)外角=180°﹣150°=30°,再根據(jù)多邊形外角和為360度即可求出邊數(shù).【詳解】∵一個(gè)正多邊形的每個(gè)內(nèi)角為150°,∴這個(gè)正多邊形的每個(gè)外角=180°﹣150°=30°,∴這個(gè)正多邊形的邊數(shù)==1.故選:A.【點(diǎn)睛】本題考查了正多邊形的外角與它對(duì)應(yīng)的內(nèi)角互補(bǔ)的性質(zhì);也考查了多邊形外角和為360度以及正多邊形的性質(zhì).5、D【解析】A.x4+x4=2x4,故錯(cuò)誤;B.(x2)3=x6,故錯(cuò)誤;C.(x﹣y)2=x2﹣2xy+y2,故錯(cuò)誤;D.x3?x=x4,正確,故選D.6、B【解析】試題分析:根據(jù)無理數(shù)的定義可得是無理數(shù).故答案選B.考點(diǎn):無理數(shù)的定義.7、D【解析】

根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解.【詳解】解:A、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,不符合題意;

B、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,不符合題意;

C、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,不符合題意;

D、是軸對(duì)稱圖形,符合題意.

故選D.【點(diǎn)睛】本題考查了中心對(duì)稱圖形和軸對(duì)稱圖形的定義,掌握中心對(duì)稱圖形與軸對(duì)稱圖形的概念,解答時(shí)要注意:判斷軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部沿對(duì)稱軸疊后可重合;判斷中心對(duì)稱圖形是要尋找對(duì)稱中心,圖形旋轉(zhuǎn)180度后與原圖重合.8、D【解析】

根據(jù)拋物線和直線的關(guān)系分析.【詳解】由拋物線圖像可知,所以反比例函數(shù)應(yīng)在二、四象限,一次函數(shù)過原點(diǎn),應(yīng)在二、四象限.故選D【點(diǎn)睛】考核知識(shí)點(diǎn):反比例函數(shù)圖象.9、D【解析】

根據(jù)平均數(shù)、中位數(shù)、眾數(shù)以及方差的定義判斷各選項(xiàng)正誤即可.【詳解】A、數(shù)據(jù)中5出現(xiàn)2次,所以眾數(shù)為5,此選項(xiàng)正確;B、數(shù)據(jù)重新排列為3、5、5、7、10,則中位數(shù)為5,此選項(xiàng)正確;C、平均數(shù)為(7+5+3+5+10)÷5=6,此選項(xiàng)正確;D、方差為×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此選項(xiàng)錯(cuò)誤;故選:D.【點(diǎn)睛】本題主要考查了方差、平均數(shù)、中位數(shù)以及眾數(shù)的知識(shí),解答本題的關(guān)鍵是熟練掌握各個(gè)知識(shí)點(diǎn)的定義以及計(jì)算公式,此題難度不大.10、C【解析】設(shè)母線長(zhǎng)為R,底面半徑是3cm,則底面周長(zhǎng)=6π,側(cè)面積=3πR=12π,

∴R=4cm.故選C.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】

根據(jù)面積法:求出豆子落在黑色方格的面積與總面積的比即可解答.【詳解】∵共有15個(gè)方格,其中黑色方格占5個(gè),∴這粒豆子落在黑色方格中的概率是=,故答案為.【點(diǎn)睛】此題考查了幾何概率的求法,利用概率=相應(yīng)的面積與總面積之比求出是解題關(guān)鍵.12、﹣1【解析】

根據(jù)根與系數(shù)的關(guān)系得出b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,求出n>2,再去絕對(duì)值符號(hào),即可得出答案.【詳解】解:∵關(guān)于x的方程x2?2x+n=1沒有實(shí)數(shù)根,∴b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,∴n>2,∴|2?n|-│1-n│=n-2-n+1=-1.故答案為-1.【點(diǎn)睛】本題考查了根的判別式,解題的關(guān)鍵是根據(jù)根與系數(shù)的關(guān)系求出n的取值范圍再去絕對(duì)值求解即可.13、1.【解析】試題分析:∵,是方程的兩實(shí)數(shù)根,∴由韋達(dá)定理,知,,∴===1,即的值是1.故答案為1.考點(diǎn):根與系數(shù)的關(guān)系.14、1.73×1.【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】將17.3萬用科學(xué)記數(shù)法表示為1.73×1.故答案為1.73×1.【點(diǎn)睛】本題考查了正整數(shù)指數(shù)科學(xué)計(jì)數(shù)法,根據(jù)科學(xué)計(jì)算法的要求,正確確定出a和n的值是解答本題的關(guān)鍵.15、【解析】

坡度=坡角的正切值,據(jù)此直接解答.【詳解】解:∵,∴坡角=30°.【點(diǎn)睛】此題主要考查學(xué)生對(duì)坡度及坡角的理解及掌握.16、1【解析】解:根據(jù)題意可得x1+x2==5,x1x2==2,∴x1+x2﹣x1x2=5﹣2=1.故答案為:1.點(diǎn)睛:本題主要考查了根據(jù)與系數(shù)的關(guān)系,利用一元二次方程的兩個(gè)根x1、x2具有這樣的關(guān)系:x1+x2=,x1x2=是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1);(2)【解析】

(1)根據(jù)概率公式計(jì)算可得;(2)畫樹狀圖列出所有等可能結(jié)果,從中找到符合要求的結(jié)果數(shù),利用概率公式計(jì)算可得.【詳解】解:(1)由于共有A、B、W三個(gè)座位,∴甲選擇座位W的概率為,故答案為:;(2)畫樹狀圖如下:由圖可知,共有6種等可能結(jié)果,其中甲、乙選擇相鄰的座位有兩種,所以P(甲乙相鄰)==.【點(diǎn)睛】此題考查了樹狀圖法求概率.注意樹狀圖法適合兩步或兩步以上完成的事件,樹狀圖法可以不重不漏的表示出所有等可能的結(jié)果,用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.18、(1)①證明見解析;②證明見解析;(2),證明見解析.【解析】

(1)①利用矩形的性質(zhì),結(jié)合已知條件可證△PMN≌△PDF,則可證得結(jié)論;②由勾股定理可求得DM=DP,利用①可求得MN=DF,則可證得結(jié)論;(2)過點(diǎn)P作PM1⊥PD,PM1交AD邊于點(diǎn)M1,則可證得△PM1N≌△PDF,則可證得M1N=DF,同(1)②的方法可證得結(jié)論.【詳解】解:(1)①∵四邊形ABCD是矩形,∴∠ADC=90°.又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;∵PM⊥PD,∠DMP=45°,∴DP=MP.∵PM⊥PD,PF⊥PN,∴∠MPN+∠NPD=∠NPD+∠DPF=90°,∴∠MPN=∠DPF.在△PMN和△PDF中,,∴△PMN≌△PDF(ASA),∴PN=PF,MN=DF;②∵PM⊥PD,DP=MP,∴DM2=DP2+MP2=2DP2,∴DM=DP.∵又∵DM=DN+MN,且由①可得MN=DF,∴DM=DN+DF,∴DF+DN=DP;(2).理由如下:過點(diǎn)P作PM1⊥PD,PM1交AD邊于點(diǎn)M1,如圖,∵四邊形ABCD是矩形,∴∠ADC=90°.又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;∵PM1⊥PD,∠DM1P=45°,∴DP=M1P,∴∠PDF=∠PM1N=135°,同(1)可知∠M1PN=∠DPF.在△PM1N和△PDF中,∴△PM1N≌△PDF(ASA),∴M1N=DF,由勾股定理可得:=DP2+M1P2=2DP2,∴DM1DP.∵DM1=DN﹣M1N,M1N=DF,∴DM1=DN﹣DF,∴DN﹣DF=DP.【點(diǎn)睛】本題為四邊形的綜合應(yīng)用,涉及矩形的性質(zhì)、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理等知識(shí).在每個(gè)問題中,構(gòu)造全等三角形是解題的關(guān)鍵,注意勾股定理的應(yīng)用.本題考查了知識(shí)點(diǎn)較多,綜合性較強(qiáng),難度適中.19、(1)見解析;(2)BG=BC+CG=1.【解析】

(1)利用正方形的性質(zhì),可得∠A=∠D,根據(jù)已知可得AE:AB=DF:DE,根據(jù)有兩邊對(duì)應(yīng)成比例且夾角相等三角形相似,可得△ABE∽△DEF;(2)根據(jù)相似三角形的預(yù)備定理得到△EDF∽△GCF,再根據(jù)相似的性質(zhì)即可求得CG的長(zhǎng),那么BG的長(zhǎng)也就不難得到.【詳解】(1)證明:∵ABCD為正方形,∴AD=AB=DC=BC,∠A=∠D=90°.∵AE=ED,∴AE:AB=1:2.∵DF=DC,∴DF:DE=1:2,∴AE:AB=DF:DE,∴△ABE∽△DEF;(2)解:∵ABCD為正方形,∴ED∥BG,∴△EDF∽△GCF,∴ED:CG=DF:CF.又∵DF=DC,正方形的邊長(zhǎng)為4,∴ED=2,CG=6,∴BG=BC+CG=1.【點(diǎn)睛】本題考查了正方形的性質(zhì),相似三角形的判定與性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.20、(1)證明見解析;(2)1.【解析】【分析】(1)欲證明四邊形OCED是矩形,只需推知四邊形OCED是平行四邊形,且有一內(nèi)角為90度即可;(2)由菱形的對(duì)角線互相垂直平分和菱形的面積公式解答.【詳解】(1)∵四邊形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四邊形OCED是平行四邊形,又∠COD=90°,∴平行四邊形OCED是矩形;(2)由(1)知,平行四邊形OCED是矩形,則CE=OD=1,DE=OC=2.∵四邊形ABCD是菱形,∴AC=2OC=1,BD=2OD=2,∴菱形ABCD的面積為:AC?BD=×1×2=1,故答案為1.【點(diǎn)睛】本題考查了矩形的判定與性質(zhì),菱形的性質(zhì),熟練掌握矩形的判定及性質(zhì)、菱形的性質(zhì)是解題的關(guān)鍵.21、(1)EH2+CH2=AE2;(2)見解析.【解析】分析:(1)如圖1,過E作EM⊥AD于M,由四邊形ABCD是菱形,得到AD=CD,∠ADE=∠CDE,通過△DME≌△DHE,根據(jù)全等三角形的性質(zhì)得到EM=EH,DM=DH,等量代換得到AM=CH,根據(jù)勾股定理即可得到結(jié)論;

(2)如圖2,根據(jù)菱形的性質(zhì)得到∠BDC=∠BDA=30°,DA=DC,在CH上截取HG,使HG=EH,推出△DEG是等邊三角形,由等邊三角形的性質(zhì)得到∠EDG=60°,推出△DAE≌△DCG,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.詳解:(1)EH2+CH2=AE2,如圖1,過E作EM⊥AD于M,∵四邊形ABCD是菱形,∴AD=CD,∠ADE=∠CDE,∵EH⊥CD,∴∠DME=∠DHE=90°,在△DME與△DHE中,,∴△DME≌△DHE,∴EM=EH,DM=DH,∴AM=CH,在Rt△AME中,AE2=AM2+EM2,∴AE2=EH2+CH2;故答案為:EH2+CH2=AE2;(2)如圖2,∵菱形ABCD,∠ADC=60°,∴∠BDC=∠BDA=30°,DA=DC,∵EH⊥CD,∴∠DEH=60°,在CH上截取HG,使HG=EH,∵DH⊥EG,∴ED=DG,又∵∠DEG=60°,∴△DEG是等邊三角形,∴∠EDG=60°,∵∠EDG=∠ADC=60°,∴∠EDG﹣∠ADG=∠ADC﹣∠ADG,∴∠ADE=∠CDG,在△DAE與△DCG中,,∴△DAE≌△DCG,∴AE=GC,∵CH=CG+GH,∴CH=AE+EH.點(diǎn)睛:考查了全等三角形的判定和性質(zhì)、菱形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、等邊三角形的判定和性質(zhì),解題的關(guān)鍵是正確的作出輔助線.22、(1)y=x2﹣x﹣2;(2)9;(3)Q坐標(biāo)為(﹣)或(4﹣)或(2,1)或(4+,﹣).【解析】試題分析:把點(diǎn)代入拋物線,求出的值即可.先用待定系數(shù)法求出直線BE的解析式,進(jìn)而求得直線AD的解析式,設(shè)則表示出,用配方法求出它的最大值,聯(lián)立方程求出點(diǎn)的坐標(biāo),最大值=,進(jìn)而計(jì)算四邊形EAPD面積的最大值;分兩種情況進(jìn)行討論即可.試題解析:(1)∵在拋物線上,∴解得∴拋物線的解析式為(2)過點(diǎn)P作軸交AD于點(diǎn)G,∵∴直線BE的解析式為∵AD∥BE,設(shè)直線AD的解析式為代入,可得∴直線AD的解析式為設(shè)則則∴當(dāng)x=1時(shí),PG的值最大,最大值為2,由解得或∴∴最大值=∵AD∥BE,∴∴S四邊形APDE最大=S△ADP最大+(3)①如圖3﹣1中,當(dāng)時(shí),作于T.∵∴∴∴可得②如圖3﹣2中,當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),Q3綜上所述,滿足條件點(diǎn)點(diǎn)Q坐標(biāo)為或或或23、(1)0;(1)a+2a+1,3【解析】

(1)根據(jù)a+e=0,可知a與e互為相反數(shù),則c=0,可得b=-1,d=1,代入可得代數(shù)式b+c+d的值;(1)根據(jù)題意可得:a=1,將分式計(jì)算并代入可得結(jié)論即可;(3)先根據(jù)A、B、C、D、E為連續(xù)整數(shù),即可求出a的值,再根據(jù)MA+MD=3,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論