2024屆浙江省杭州市上城區(qū)杭州中學中考數(shù)學押題試卷含解析_第1頁
2024屆浙江省杭州市上城區(qū)杭州中學中考數(shù)學押題試卷含解析_第2頁
2024屆浙江省杭州市上城區(qū)杭州中學中考數(shù)學押題試卷含解析_第3頁
2024屆浙江省杭州市上城區(qū)杭州中學中考數(shù)學押題試卷含解析_第4頁
2024屆浙江省杭州市上城區(qū)杭州中學中考數(shù)學押題試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆浙江省杭州市上城區(qū)杭州中學中考數(shù)學押題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.-的立方根是()A.-8 B.-4 C.-2 D.不存在2.如圖,等腰直角三角形位于第一象限,,直角頂點在直線上,其中點的橫坐標為,且兩條直角邊,分別平行于軸、軸,若反比例函數(shù)的圖象與有交點,則的取值范圍是().A. B. C. D.3.如圖,按照三視圖確定該幾何體的側面積是(單位:cm)()A.24πcm2 B.48πcm2 C.60πcm2 D.80πcm24.矩形ABCD與CEFG,如圖放置,點B,C,E共線,點C,D,G共線,連接AF,取AF的中點H,連接GH.若BC=EF=2,CD=CE=1,則GH=()A.1 B. C. D.5.若關于x的一元二次方程(k-1)x2+4x+1=0有兩個不相等的實數(shù)根,則k的取值范圍是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>56.如圖,菱形ABCD的對角線交于點O,AC=8cm,BD=6cm,則菱形的高為()A.cm B.cm C.cm D.cm7.已知反比例函數(shù)y=﹣,當﹣3<x<﹣2時,y的取值范圍是()A.0<y<1 B.1<y<2 C.2<y<3 D.﹣3<y<﹣28.為迎接中考體育加試,小剛和小亮分別統(tǒng)計了自己最近10次跳繩比賽,下列統(tǒng)計量中能用來比較兩人成績穩(wěn)定程度的是()A.平均數(shù)B.中位數(shù)C.眾數(shù)D.方差9.實數(shù)a,b,c,d在數(shù)軸上的對應點的位置如圖所示,下列結論①a<b;②|b|=|d|;③a+c=a;④ad>0中,正確的有()A.4個 B.3個 C.2個 D.1個10.某學校舉行一場知識競賽活動,競賽共有4小題,每小題5分,答對給5分,答錯或不答給0分,在該學校隨機抽取若干同學參加比賽,成績被制成不完整的統(tǒng)計表如下.成績人數(shù)(頻數(shù))百分比(頻率)050.2105150.42050.1根據(jù)表中已有的信息,下列結論正確的是()A.共有40名同學參加知識競賽B.抽到的同學參加知識競賽的平均成績?yōu)?0分C.已知該校共有800名學生,若都參加競賽,得0分的估計有100人D.抽到同學參加知識競賽成績的中位數(shù)為15分二、填空題(本大題共6個小題,每小題3分,共18分)11.關于x的一元二次方程x2﹣2x+m﹣1=0有兩個實數(shù)根,則m的取值范圍是_____.12.如圖,直線l⊥x軸于點P,且與反比例函數(shù)y1=(x>0)及y2=(x>0)的圖象分別交于點A,B,連接OA,OB,已知△OAB的面積為2,則k1-k2=________.13.的相反數(shù)是_____.14.一元二次方程x2﹣4=0的解是._________15.若使代數(shù)式有意義,則x的取值范圍是_____.16.如圖,正方形ABCD邊長為3,連接AC,AE平分∠CAD,交BC的延長線于點E,F(xiàn)A⊥AE,交CB延長線于點F,則EF的長為__________.三、解答題(共8題,共72分)17.(8分)如圖,把兩個邊長相等的等邊△ABC和△ACD拼成菱形ABCD,點E、F分別是CB、DC延長上的動點,且始終保持BE=CF,連結AE、AF、EF.求證:AEF是等邊三角形.18.(8分)如圖,益陽市梓山湖中有一孤立小島,湖邊有一條筆直的觀光小道AB,現(xiàn)決定從小島架一座與觀光小道垂直的小橋PD,小張在小道上測得如下數(shù)據(jù):AB=80.0米,∠PAB=38.1°,∠PBA=26.1.請幫助小張求出小橋PD的長并確定小橋在小道上的位置.(以A,B為參照點,結果精確到0.1米)(參考數(shù)據(jù):sin38.1°=0.62,cos38.1°=0.78,tan38.1°=0.80,sin26.1°=0.41,cos26.1°=0.89,tan26.1°=0.10)19.(8分)計算:(1)(2)2﹣|﹣4|+3﹣1×6+20;(2).20.(8分)(1)如圖1,半徑為2的圓O內有一點P,切OP=1,弦AB過點P,則弦AB長度的最大值為__________;最小值為___________.圖①(2)如圖2,△ABC是葛叔叔家的菜地示意圖,其中∠ABC=90°,AB=80米,BC=60米,現(xiàn)在他利用周邊地的情況,把原來的三角形地拓展成符合條件的面積盡可能大、周長盡可能長的四邊形地,用來建魚塘.已知葛叔叔想建的魚塘是四邊形ABCD,且滿足∠ADC=60°,你認為葛叔叔的想法能實現(xiàn)嗎?若能,求出這個四邊形魚塘面積和周長的最大值;若不能,請說明理由.圖②21.(8分)如圖,在平面直角坐標系中有三點(1,2),(3,1),(-2,-1),其中有兩點同時在反比例函數(shù)的圖象上,將這兩點分別記為A,B,另一點記為C,(1)求出的值;(2)求直線AB對應的一次函數(shù)的表達式;(3)設點C關于直線AB的對稱點為D,P是軸上的一個動點,直接寫出PC+PD的最小值(不必說明理由).22.(10分)如圖,已知拋物線y=ax2﹣2ax+b與x軸交于A、B(3,0)兩點,與y軸交于點C,且OC=3OA,設拋物線的頂點為D.(1)求拋物線的解析式;(2)在拋物線對稱軸的右側的拋物線上是否存在點P,使得△PDC是等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由;(3)若平行于x軸的直線與該拋物線交于M、N兩點(其中點M在點N的右側),在x軸上是否存在點Q,使△MNQ為等腰直角三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.23.(12分)計算:(-1)-1-++|1-3|24.如圖,在平面直角坐標系中,矩形DOBC的頂點O與坐標原點重合,B、D分別在坐標軸上,點C的坐標為(6,4),反比例函數(shù)y=(x>0)的圖象經(jīng)過線段OC的中點A,交DC于點E,交BC于點F.(1)求反比例函數(shù)的解析式;(2)求△OEF的面積;(3)設直線EF的解析式為y=k2x+b,請結合圖象直接寫出不等式k2x+b>的解集.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】分析:首先求出的值,然后根據(jù)立方根的計算法則得出答案.詳解:∵,,∴的立方根為-2,故選C.點睛:本題主要考查的是算術平方根與立方根,屬于基礎題型.理解算術平方根與立方根的含義是解決本題的關鍵.2、D【解析】設直線y=x與BC交于E點,分別過A、E兩點作x軸的垂線,垂足為D、F,則A(1,1),而AB=AC=2,則B(3,1),△ABC為等腰直角三角形,E為BC的中點,由中點坐標公式求E點坐標,當雙曲線與△ABC有唯一交點時,這個交點分別為A、E,由此可求出k的取值范圍.解:∵,..又∵過點,交于點,∴,∴,∴.故選D.3、A【解析】

由主視圖和左視圖確定是柱體,錐體還是球體,再由俯視圖確定具體形狀,確定圓錐的母線長和底面半徑,從而確定其側面積.【詳解】解:由主視圖和左視圖為三角形判斷出是錐體,由俯視圖是圓形可判斷出這個幾何體應該是圓錐;根據(jù)三視圖知:該圓錐的母線長為6cm,底面半徑為8÷1=4cm,故側面積=πrl=π×6×4=14πcm1.故選:A.【點睛】此題考查學生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.4、C【解析】分析:延長GH交AD于點P,先證△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,從而得出答案.詳解:如圖,延長GH交AD于點P,∵四邊形ABCD和四邊形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中點,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,則GH=PG=×=,故選:C.點睛:本題主要考查矩形的性質,解題的關鍵是掌握全等三角形的判定與性質、矩形的性質、勾股定理等知識點.5、B【解析】試題解析:∵關于x的一元二次方程方程有兩個不相等的實數(shù)根,∴,即,解得:k<5且k≠1.故選B.6、B【解析】試題解析:∵菱形ABCD的對角線根據(jù)勾股定理,設菱形的高為h,則菱形的面積即解得即菱形的高為cm.故選B.7、C【解析】分析:由題意易得當﹣3<x<﹣2時,函數(shù)的圖象位于第二象限,且y隨x的增大而增大,再計算出當x=-3和x=-2時對應的函數(shù)值,即可作出判斷了.詳解:∵在中,﹣6<0,∴當﹣3<x<﹣2時函數(shù)的圖象位于第二象限內,且y隨x的增大而增大,∵當x=﹣3時,y=2,當x=﹣2時,y=3,∴當﹣3<x<﹣2時,2<y<3,故選C.點睛:熟悉“反比例函數(shù)的圖象和性質”是正確解答本題的關鍵.8、D【解析】

根據(jù)方差反映數(shù)據(jù)的波動情況即可解答.【詳解】由于方差反映數(shù)據(jù)的波動情況,所以比較兩人成績穩(wěn)定程度的數(shù)據(jù)是方差.故選D.【點睛】本題主要考查了統(tǒng)計的有關知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.9、B【解析】

根據(jù)數(shù)軸上的點表示的數(shù)右邊的總比左邊的大,有理數(shù)的運算,絕對值的意義,可得答案.【詳解】解:由數(shù)軸,得a=-3.5,b=-2,c=0,d=2,①a<b,故①正確;②|b|=|d|,故②正確;③a+c=a,故③正確;④ad<0,故④錯誤;故選B.【點睛】本題考查了實數(shù)與數(shù)軸,利用數(shù)軸上的點表示的數(shù)右邊的總比左邊的大,有理數(shù)的運算,絕對值的意義是解題關鍵.10、B【解析】

根據(jù)頻數(shù)÷頻率=總數(shù)可求出參加人數(shù),根據(jù)分別求出5分、15分、0分的人數(shù),即可求出平均分,根據(jù)0分的頻率即可求出800人中0分的人數(shù),根據(jù)中位數(shù)的定義求出中位數(shù),對選項進行判斷即可.【詳解】∵5÷0.1=50(名),有50名同學參加知識競賽,故選項A錯誤;∵成績5分、15分、0分的同學分別有:50×0.2=10(名),50×0.4=20(名),50﹣10﹣5﹣20﹣5=10(名)∴抽到的同學參加知識競賽的平均成績?yōu)椋?10,故選項B正確;∵0分同學10人,其頻率為0.2,∴800名學生,得0分的估計有800×0.2=160(人),故選項C錯誤;∵第25、26名同學的成績?yōu)?0分、15分,∴抽到同學參加知識競賽成績的中位數(shù)為12.5分,故選項D錯誤.故選:B.【點睛】本題考查利用頻率估算概率,平均數(shù)及中位數(shù)的定義,熟練掌握相關知識是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、m≤1【解析】

根據(jù)一元二次方程有實數(shù)根,得出△≥0,建立關于m的不等式,求出m的取值范圍即可.【詳解】解:由題意知,△=4﹣4(m﹣1)≥0,∴m≤1,故答案為:m≤1.【點睛】此題考查了根的判別式,掌握一元二次方程根的情況與判別式△的關系:△>0,方程有兩個不相等的實數(shù)根;△=0,方程有兩個相等的實數(shù)根;△<0,方程沒有實數(shù)根是本題的關鍵.12、2【解析】

試題分析:∵反比例函數(shù)(x>1)及(x>1)的圖象均在第一象限內,∴>1,>1.∵AP⊥x軸,∴S△OAP=,S△OBP=,∴S△OAB=S△OAP﹣S△OBP==2,解得:=2.故答案為2.13、【解析】

根據(jù)只有符號不同的兩個數(shù)互為相反數(shù),可得答案.【詳解】的相反數(shù)是?.故答案為?.【點睛】本題考查的知識點是相反數(shù),解題的關鍵是熟練的掌握相反數(shù).14、x=±1【解析】移項得x1=4,∴x=±1.故答案是:x=±1.15、x≠﹣2【解析】

直接利用分式有意義則其分母不為零,進而得出答案.【詳解】∵分式有意義,∴x的取值范圍是:x+2≠0,解得:x≠?2.故答案是:x≠?2.【點睛】本題考查了分式有意義的條件,解題的關鍵是熟練的掌握分式有意義的條件.16、6【解析】

利用正方形的性質和勾股定理可得AC的長,由角平分線的性質和平行線的性質可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的長.【詳解】解:∵四邊形ABCD為正方形,且邊長為3,∴AC=3,∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴CE=CA=3,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴CF=AC=3,∴EF=CF+CE=3+3=6三、解答題(共8題,共72分)17、見解析【解析】分析:由等邊三角形的性質即可得出∠ABE=∠ACF,由全等三角形的性質即可得出結論.詳解:證明:∵△ABC和△ACD均為等邊三角形∴AB=AC,∠ABC=∠ACD=60°,∴∠ABE=∠ACF=120°,∵BE=CF,∴△ABE≌△ACF,∴AE=AF,∴∠EAB=∠FAC,∴∠EAF=∠BAC=60°,∴△AEF是等邊三角形.點睛:此題是四邊形綜合題,主要考查了等邊三角形的性質和全等三角形的判定和性質,直角三角形的性質,相似三角形的判定和性質,解題關鍵是判斷出△ABE≌△ACF.18、49.2米【解析】

設PD=x米,在Rt△PAD中表示出AD,在Rt△PDB中表示出BD,再由AB=80.0米,可得出方程,解出即可得出PD的長度,繼而也可確定小橋在小道上的位置.【詳解】解:設PD=x米,∵PD⊥AB,∴∠ADP=∠BDP=90°.在Rt△PAD中,,∴.在Rt△PBD中,,∴.又∵AB=80.0米,∴,解得:x≈24.6,即PD≈24.6米.∴DB=2x=49.2米.答:小橋PD的長度約為24.6米,位于AB之間距B點約49.2米.19、(1)1;(2).【解析】

(1)先計算乘方、絕對值、負整數(shù)指數(shù)冪和零指數(shù)冪,再計算乘法,最后計算加減運算可得;(2)先將分子、分母因式分解,再計算乘法,最后計算減法即可得.【詳解】(1)原式=8-4+×6+1=8-4+2+1=1.(2)原式===.【點睛】本題主要考查實數(shù)和分式的混合運算,解題的關鍵是掌握絕對值性質、負整數(shù)指數(shù)冪、零指數(shù)冪及分式混合運算順序和運算法則.20、(1)弦AB長度的最大值為4,最小值為2;(2)面積最大值為(2500+2400)平方米,周長最大值為340米.【解析】

(1)當AB是過P點的直徑時,AB最長;當AB⊥OP時,AB最短,分別求出即可.(2)如圖在△ABC的一側以AC為邊做等邊三角形AEC,再做△AEC的外接圓,則滿足∠ADC=60°的點D在優(yōu)弧AEC上(點D不與A、C重合),當D與E重合時,S△ADC最大值=S△AEC,由S△ABC為定值,故此時四邊形ABCD的面積最大,再根據(jù)勾股定理和等邊三角形的性質求出此時的面積與周長即可.【詳解】(1)(1)當AB是過P點的直徑時,AB最長=2×2=4;當AB⊥OP時,AB最短,AP=∴AB=2(2)如圖,在△ABC的一側以AC為邊做等邊三角形AEC,再做△AEC的外接圓,當D與E重合時,S△ADC最大故此時四邊形ABCD的面積最大,∵∠ABC=90°,AB=80,BC=60∴AC=∴周長為AB+BC+CD+AE=80+60+100+100=340(米)S△ADC=S△ABC=∴四邊形ABCD面積最大值為(2500+2400)平方米.【點睛】此題主要考查圓的綜合利用,解題的關鍵是熟知圓的性質定理與垂徑定理.21、(2)2;(2)y=x+2;(3).【解析】

(2)確定A、B、C的坐標即可解決問題;(2)理由待定系數(shù)法即可解決問題;(3)作D關于x軸的對稱點D′(0,-4),連接CD′交x軸于P,此時PC+PD的值最小,最小值=CD′的長.【詳解】解:(2)∵反比例函數(shù)y=的圖象上的點橫坐標與縱坐標的積相同,∴A(2,2),B(-2,-2),C(3,2)∴k=2.(2)設直線AB的解析式為y=mx+n,則有,解得,∴直線AB的解析式為y=x+2.(3)∵C、D關于直線AB對稱,∴D(0,4)作D關于x軸的對稱點D′(0,-4),連接CD′交x軸于P,此時PC+PD的值最小,最小值=CD′=.【點睛】本題考查反比例函數(shù)圖象上的點的特征,一次函數(shù)的性質、反比例函數(shù)的性質、軸對稱最短問題等知識,解題的關鍵是熟練掌握待定系數(shù)法確定函數(shù)解析式,學會利用軸對稱解決最短問題.22、(1)y=﹣x2+2x+1;(2)P(2,1)或(,);(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0).【解析】

(1)根據(jù)拋物線的解析式,可得到它的對稱軸方程,進而可根據(jù)點B的坐標來確定點A的坐標,已知OC=1OA,即可得到點C的坐標,利用待定系數(shù)法即可求得該拋物線的解析式.(2)求出點C關于對稱軸的對稱點,求出兩點間的距離與CD相比較可知,PC不可能與CD相等,因此要分兩種情況討論:①CD=PD,根據(jù)拋物線的對稱性可知,C點關于拋物線對稱軸的對稱點滿足P點的要求,坐標易求得;②PD=PC,可設出點P的坐標,然后表示出PC、PD的長,根據(jù)它們的等量關系列式求出點P的坐標.(1)此題要分三種情況討論:①點Q是直角頂點,那么點Q必為拋物線對稱軸與x軸的交點,由此求得點Q的坐標;②M、N在x軸上方,且以N為直角頂點時,可設出點N的坐標,根據(jù)拋物線的對稱性可知MN正好等于拋物線對稱軸到N點距離的2倍,而△MNQ是等腰直角三角形,則QN=MN,由此可表示出點N的縱坐標,聯(lián)立拋物線的解析式,即可得到關于N點橫坐標的方程,從而求得點Q的坐標;根據(jù)拋物線的對稱性知:Q關于拋物線的對稱點也符合題意;③M、N在x軸下方,且以N為直角頂點時,方法同②.【詳解】解:(1)由y=ax2﹣2ax+b可得拋物線對稱軸為x=1,由B(1,0)可得A(﹣1,0);∵OC=1OA,∴C(0,1);依題意有:,解得;∴y=﹣x2+2x+1.(2)存在.①DC=DP時,由C點(0,1)和x=1可得對稱點為P(2,1);設P2(x,y),∵C(0,1),P(2,1),∴CP=2,∵D(1,4),∴CD=<2,②由①此時CD⊥PD,根據(jù)垂線段最短可得,PC不可能與CD相等;②PC=PD時,∵CP22=(1﹣y)2+x2,DP22=(x﹣1)2+(4﹣y)2∴(1﹣y)2+x2=(x﹣1)2+(4﹣y)2將y=﹣x2+2x+1代入可得:,∴;∴P2(,).綜上所述,P(2,1)或(,).(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0);①若Q是直角頂點,由對稱性可直接得Q1(1,0);②若N是直角頂

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論