2024屆四川省宜賓市興文縣初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第1頁
2024屆四川省宜賓市興文縣初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第2頁
2024屆四川省宜賓市興文縣初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第3頁
2024屆四川省宜賓市興文縣初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第4頁
2024屆四川省宜賓市興文縣初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆四川省宜賓市興文縣初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.“趕陀螺”是一項深受人們喜愛的運動.如圖所示是一個陀螺的立體結(jié)構(gòu)圖.已知底面圓的直徑AB=8cm,圓柱的高BC=6cm,圓錐的高CD=3cm,則這個陀螺的表面積是()A.68πcm2 B.74πcm2 C.84πcm2 D.100πcm22.如圖所示,在長方形紙片ABCD中,AB=32cm,把長方形紙片沿AC折疊,點B落在點E處,AE交DC于點F,AF=25cm,則AD的長為()A.16cm B.20cm C.24cm D.28cm3.下列算式的運算結(jié)果正確的是()A.m3?m2=m6B.m5÷m3=m2(m≠0)C.(m﹣2)3=m﹣5D.m4﹣m2=m24.如圖,在正方形ABCD中,點E,F(xiàn)分別在BC,CD上,AE=AF,AC與EF相交于點G,下列結(jié)論:①AC垂直平分EF;②BE+DF=EF;③當∠DAF=15°時,△AEF為等邊三角形;④當∠EAF=60°時,S△ABE=S△CEF,其中正確的是()A.①③ B.②④ C.①③④ D.②③④5.如圖,在⊙O中,弦BC=1,點A是圓上一點,且∠BAC=30°,則的長是()A.π B. C. D.6.為了解中學(xué)300名男生的身高情況,隨機抽取若干名男生進行身高測量,將所得數(shù)據(jù)整理后,畫出頻數(shù)分布直方圖(如圖).估計該校男生的身高在169.5cm~174.5cm之間的人數(shù)有()A.12 B.48 C.72 D.967.如圖,直線y=34x+3交x軸于A點,將一塊等腰直角三角形紙板的直角頂點置于原點O,另兩個頂點M、N恰落在直線y=3A.17 B.16 C.18.加工爆米花時,爆開且不糊的粒數(shù)占加工總粒數(shù)的百分比稱為“可食用率”.在特定條件下,可食用率p與加工時間t(單位:分鐘)滿足的函數(shù)關(guān)系p=at2+bt+c(a,b,c是常數(shù)),如圖記錄了三次實驗的數(shù)據(jù).根據(jù)上述函數(shù)模型和實驗數(shù)據(jù),可得到最佳加工時間為()A.4.25分鐘 B.4.00分鐘 C.3.75分鐘 D.3.50分鐘9.計算-5+1的結(jié)果為()A.-6 B.-4 C.4 D.610.已知關(guān)于x,y的二元一次方程組的解為,則a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣3二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,線段AC=n+1(其中n為正整數(shù)),點B在線段AC上,在線段AC同側(cè)作正方形ABMN及正方形BCEF,連接AM、ME、EA得到△AME.當AB=1時,△AME的面積記為S1;當AB=2時,△AME的面積記為S2;當AB=3時,△AME的面積記為S3;…;當AB=n時,△AME的面積記為Sn.當n≥2時,Sn﹣Sn﹣1=▲.12.據(jù)媒體報道,我國研制的“察打一體”無人機的速度極快,經(jīng)測試最高速度可達204000米/分,將204000這個數(shù)用科學(xué)記數(shù)法表示為_____.13.可燃冰是一種新型能源,它的密度很小,可燃冰的質(zhì)量僅為.數(shù)字0.00092用科學(xué)記數(shù)法表示是__________.14.如圖放置的正方形,正方形,正方形,…都是邊長為的正方形,點在軸上,點,…,都在直線上,則的坐標是__________,的坐標是______.15.函數(shù)y=中,自變量x的取值范圍是________.16.的系數(shù)是_____,次數(shù)是_____.三、解答題(共8題,共72分)17.(8分)如圖,AB是半圓O的直徑,過點O作弦AD的垂線交半圓O于點E,交AC于點C,使∠BED=∠C.(1)判斷直線AC與圓O的位置關(guān)系,并證明你的結(jié)論;(2)若AC=8,cos∠BED=4518.(8分)計算:sin30°?tan60°+..19.(8分)商場某種商品平均每天可銷售30件,每件盈利50元,為了盡快減少庫存,商場決定采取適當?shù)慕祪r措施.經(jīng)調(diào)査發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件.若某天該商品每件降價3元,當天可獲利多少元?設(shè)每件商品降價x元,則商場日銷售量增加____件,每件商品,盈利______元(用含x的代數(shù)式表示);在上述銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2000元?20.(8分)如圖,已知ABCD是邊長為3的正方形,點P在線段BC上,點G在線段AD上,PD=PG,DF⊥PG于點H,交AB于點F,將線段PG繞點P逆時針旋轉(zhuǎn)90°得到線段PE,連接EF.(1)求證:DF=PG;(2)若PC=1,求四邊形PEFD的面積.21.(8分)如圖,已知點B、E、C、F在一條直線上,AB=DF,AC=DE,∠A=∠D求證:AC∥DE;若BF=13,EC=5,求BC的長.22.(10分)我國古代數(shù)學(xué)著作《增刪算法統(tǒng)宗》記載“官兵分布”問題:“一千官軍一千布,一官四疋無零數(shù),四軍才分布一疋,請問官軍多少數(shù).”其大意為:今有1000官兵分1000匹布,1官分4匹,4兵分1匹.問官和兵各幾人?23.(12分)受益于國家支持新能源汽車發(fā)展和“一帶一路”發(fā)展戰(zhàn)略等多重利好因素,我市某汽車零部件生產(chǎn)企業(yè)的利潤逐年提高,據(jù)統(tǒng)計,2014年利潤為2億元,2016年利潤為2.88億元.求該企業(yè)從2014年到2016年利潤的年平均增長率;若2017年保持前兩年利潤的年平均增長率不變,該企業(yè)2017年的利潤能否超過3.4億元?24.如圖,已知在梯形ABCD中,,P是線段BC上一點,以P為圓心,PA為半徑的與射線AD的另一個交點為Q,射線PQ與射線CD相交于點E,設(shè).(1)求證:;(2)如果點Q在線段AD上(與點A、D不重合),設(shè)的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;(3)如果與相似,求BP的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:∵底面圓的直徑為8cm,高為3cm,∴母線長為5cm,∴其表面積=π×4×5+42π+8π×6=84πcm2,故選C.考點:圓錐的計算;幾何體的表面積.2、C【解析】

首先根據(jù)平行線的性質(zhì)以及折疊的性質(zhì)證明∠EAC=∠DCA,根據(jù)等角對等邊證明FC=AF,則DF即可求得,然后在直角△ADF中利用勾股定理求解.【詳解】∵長方形ABCD中,AB∥CD,∴∠BAC=∠DCA,又∵∠BAC=∠EAC,∴∠EAC=∠DCA,∴FC=AF=25cm,又∵長方形ABCD中,DC=AB=32cm,∴DF=DC-FC=32-25=7cm,在直角△ADF中,AD==24(cm).故選C.【點睛】本題考查了折疊的性質(zhì)以及勾股定理,在折疊的過程中注意到相等的角以及相等的線段是關(guān)鍵.3、B【解析】

直接利用同底數(shù)冪的除法運算法則以及合并同類項法則、積的乘方運算法則分別化簡得出答案.【詳解】A、m3?m2=m5,故此選項錯誤;B、m5÷m3=m2(m≠0),故此選項正確;C、(m-2)3=m-6,故此選項錯誤;D、m4-m2,無法計算,故此選項錯誤;故選:B.【點睛】此題主要考查了同底數(shù)冪的除法運算以及合并同類項法則、積的乘方運算,正確掌握運算法則是解題關(guān)鍵.4、C【解析】

①通過條件可以得出△ABE≌△ADF,從而得出∠BAE=∠DAF,BE=DF,由正方形的性質(zhì)就可以得出EC=FC,就可以得出AC垂直平分EF,②設(shè)BC=a,CE=y,由勾股定理就可以得出EF與x、y的關(guān)系,表示出BE與EF,即可判斷BE+DF與EF關(guān)系不確定;③當∠DAF=15°時,可計算出∠EAF=60°,即可判斷△EAF為等邊三角形,④當∠EAF=60°時,設(shè)EC=x,BE=y,由勾股定理就可以得出x與y的關(guān)系,表示出BE與EF,利用三角形的面積公式分別表示出S△CEF和S△ABE,再通過比較大小就可以得出結(jié)論.【詳解】①四邊形ABCD是正方形,∴AB═AD,∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF∵BC=CD,∴BC-BE=CD-DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故①正確).②設(shè)BC=a,CE=y,∴BE+DF=2(a-y)EF=y,∴BE+DF與EF關(guān)系不確定,只有當y=(2?)a時成立,(故②錯誤).③當∠DAF=15°時,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF為等邊三角形.(故③正確).④當∠EAF=60°時,設(shè)EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2=(x)2∴x2=2y(x+y)∵S△CEF=x2,S△ABE=y(x+y),∴S△ABE=S△CEF.(故④正確).綜上所述,正確的有①③④,故選C.【點睛】本題考查了正方形的性質(zhì)的運用,全等三角形的判定及性質(zhì)的運用,勾股定理的運用,等邊三角形的性質(zhì)的運用,三角形的面積公式的運用,解答本題時運用勾股定理的性質(zhì)解題時關(guān)鍵.5、B【解析】

連接OB,OC.首先證明△OBC是等邊三角形,再利用弧長公式計算即可.【詳解】解:連接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=1,∴的長=,故選B.【點睛】考查弧長公式,等邊三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,屬于中考??碱}型.6、C【解析】

解:根據(jù)圖形,身高在169.5cm~174.5cm之間的人數(shù)的百分比為:,∴該校男生的身高在169.5cm~174.5cm之間的人數(shù)有300×24%=72(人).故選C.7、A【解析】

過O作OC⊥AB于C,過N作ND⊥OA于D,設(shè)N的坐標是(x,34x+3),得出DN=34x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面積公式得出AO×OB=AB×OC,代入求出OC,根據(jù)sin45°=OCON,求出ON,在Rt△NDO中,由勾股定理得出(34x+3)2+(-x)2=(122【詳解】過O作OC⊥AB于C,過N作ND⊥OA于D,∵N在直線y=34∴設(shè)N的坐標是(x,34則DN=34y=34當x=0時,y=3,當y=0時,x=-4,∴A(-4,0),B(0,3),即OA=4,OB=3,在△AOB中,由勾股定理得:AB=5,∵在△AOB中,由三角形的面積公式得:AO×OB=AB×OC,∴3×4=5OC,OC=125∵在Rt△NOM中,OM=ON,∠MON=90°,∴∠MNO=45°,∴sin45°=OCON∴ON=122在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,即(34x+3)2+(-x)2=(1225解得:x1=-8425,x2=12∵N在第二象限,∴x只能是-842534x+3=12即ND=1225,OD=84tan∠AON=NDOD故選A.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征,勾股定理,三角形的面積,解直角三角形等知識點的運用,主要考查學(xué)生運用這些性質(zhì)進行計算的能力,題目比較典型,綜合性比較強.8、C【解析】

根據(jù)題目數(shù)據(jù)求出函數(shù)解析式,根據(jù)二次函數(shù)的性質(zhì)可得.【詳解】根據(jù)題意,將(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:解得:a=?0.2,b=1.5,c=?2,即p=?0.2t2+1.5t?2,當t=?=3.75時,p取得最大值,故選C.【點睛】本題考查了二次函數(shù)的應(yīng)用,熟練掌握性質(zhì)是解題的關(guān)鍵.9、B【解析】

根據(jù)有理數(shù)的加法法則計算即可.【詳解】解:-5+1=-(5-1)=-1.故選B.【點睛】本題考查了有理數(shù)的加法.10、B【解析】

把代入方程組得:,解得:,所以a?2b=?2×()=2.故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】連接BE,∵在線段AC同側(cè)作正方形ABMN及正方形BCEF,∴BE∥AM.∴△AME與△AMB同底等高.∴△AME的面積=△AMB的面積.∴當AB=n時,△AME的面積為,當AB=n-1時,△AME的面積為.∴當n≥2時,12、2.04×1【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值≥1時,n是非負數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:204000用科學(xué)記數(shù)法表示2.04×1.故答案為2.04×1.點睛:本題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.13、9.2×10﹣1.【解析】

根據(jù)科學(xué)記數(shù)法的正確表示為,由題意可得0.00092用科學(xué)記數(shù)法表示是9.2×10﹣1.【詳解】根據(jù)科學(xué)記數(shù)法的正確表示形式可得:0.00092用科學(xué)記數(shù)法表示是9.2×10﹣1.故答案為:9.2×10﹣1.【點睛】本題主要考查科學(xué)記數(shù)法的正確表現(xiàn)形式,解決本題的關(guān)鍵是要熟練掌握科學(xué)記數(shù)法的正確表現(xiàn)形式.14、【解析】

先求出OA的長度,然后利用含30°的直角三角形的性質(zhì)得到點D的坐標,探索規(guī)律,從而得到的坐標即可.【詳解】分別過點作y軸的垂線交y軸于點,∵點B在上設(shè)∴同理,都是含30°的直角三角形∵,∴同理,點的橫坐標為縱坐標為故點的坐標為故答案為:;.【點睛】本題主要考查含30°的直角三角形的性質(zhì),找到點的坐標規(guī)律是解題的關(guān)鍵.15、x≤1【解析】分析:根據(jù)二次根式有意義的條件解答即可.詳解:∵二次根式有意義,被開方數(shù)為非負數(shù),∴1-x≥0,解得x≤1.故答案為x≤1.點睛:本題考查了二次根式有意義的條件,熟知二次根式有意義,被開方數(shù)為非負數(shù)是解題的關(guān)鍵.16、1【解析】

根據(jù)單項式系數(shù)及次數(shù)的定義進行解答即可.【詳解】根據(jù)單項式系數(shù)和次數(shù)的定義可知,﹣的系數(shù)是,次數(shù)是1.【點睛】本題考查了單項式,熟知單項式中的數(shù)字因數(shù)叫做單項式的系數(shù),一個單項式中所有字母的指數(shù)的和叫做單項式的次數(shù)是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)AC與⊙O相切,證明參見解析;(2).【解析】試題分析:(1)由于OC⊥AD,那么∠OAD+∠AOC=90°,又∠BED=∠BAD,且∠BED=∠C,于是∠OAD=∠C,從而有∠C+∠AOC=90°,再利用三角形內(nèi)角和定理,可求∠OAC=90°,即AC是⊙O的切線;(2)連接BD,AB是直徑,那么∠ADB=90°,在Rt△AOC中,由于AC=8,∠C=∠BED,cos∠BED=,利用三角函數(shù)值,可求OA=6,即AB=12,在Rt△ABD中,由于AB=12,∠OAD=∠BED,cos∠BED=,同樣利用三角函數(shù)值,可求AD.試題解析:(1)AC與⊙O相切.∵弧BD是∠BED與∠BAD所對的弧,∴∠BAD=∠BED,∵OC⊥AD,∴∠AOC+∠BAD=90°,∴∠BED+∠AOC=90°,即∠C+∠AOC=90°,∴∠OAC=90°,∴AB⊥AC,即AC與⊙O相切;(2)連接BD.∵AB是⊙O直徑,∴∠ADB=90°,在Rt△AOC中,∠CAO=90°,∵AC=8,∠ADB=90°,cos∠C=cos∠BED=,∴AO=6,∴AB=12,在Rt△ABD中,∵cos∠OAD=cos∠BED=,∴AD=AB?cos∠OAD=12×=.考點:1.切線的判定;2.解直角三角形.18、【解析】試題分析:把相關(guān)的特殊三角形函數(shù)值代入進行計算即可.試題解析:原式=.19、(1)若某天該商品每件降價3元,當天可獲利1692元;(2)2x;50﹣x.(3)每件商品降價1元時,商場日盈利可達到2000元.【解析】

(1)根據(jù)“盈利=單件利潤×銷售數(shù)量”即可得出結(jié)論;

(2)根據(jù)“每件商品每降價1元,商場平均每天可多售出2件”結(jié)合每件商品降價x元,即可找出日銷售量增加的件數(shù),再根據(jù)原來沒見盈利50元,即可得出降價后的每件盈利額;

(3)根據(jù)“盈利=單件利潤×銷售數(shù)量”即可列出關(guān)于x的一元二次方程,解之即可得出x的值,再根據(jù)盡快減少庫存即可確定x的值.【詳解】(1)當天盈利:(50-3)×(30+2×3)=1692(元).

答:若某天該商品每件降價3元,當天可獲利1692元.

(2)∵每件商品每降價1元,商場平均每天可多售出2件,

∴設(shè)每件商品降價x元,則商場日銷售量增加2x件,每件商品,盈利(50-x)元.

故答案為2x;50-x.

(3)根據(jù)題意,得:(50-x)×(30+2x)=2000,

整理,得:x2-35x+10=0,

解得:x1=10,x2=1,

∵商城要盡快減少庫存,

∴x=1.

答:每件商品降價1元時,商場日盈利可達到2000元.【點睛】考查了一元二次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)題意找出數(shù)量關(guān)系列出一元二次方程(或算式).20、(1)證明見解析;(2)1.【解析】

作PM⊥AD,在四邊形ABCD和四邊形ABPM證AD=PM;DF⊥PG,得出∠GDH+∠DGH=90°,推出∠ADF=∠MPG;還有兩個直角即可證明△ADF≌△MPG,從而得出對應(yīng)邊相等(2)由已知得,DG=2PC=2;△ADF≌△MPG得出DF=PD;根據(jù)旋轉(zhuǎn),得出∠EPG=90°,PE=PG從而得出四邊形PEFD為平行四邊形;根據(jù)勾股定理和等量代換求出邊長DF的值;根據(jù)相似三角形得出對應(yīng)邊成比例求出GH的值,從而求出高PH的值;最后根據(jù)面積公式得出【詳解】解:(1)證明:∵四邊形ABCD為正方形,∴AD=AB,∵四邊形ABPM為矩形,∴AB=PM,∴AD=PM,∵DF⊥PG,∴∠DHG=90°,∴∠GDH+∠DGH=90°,∵∠MGP+∠MPG=90°,∴∠GDH=∠MPG,在△ADF和△MPG中,∴△ADF≌△MPG(ASA),∴DF=PG;(2)作PM⊥DG于M,如圖,∵PD=PG,∴MG=MD,∵四邊形ABCD為矩形,∴PCDM為矩形,∴PC=MD,∴DG=2PC=2;∵△ADF≌△MPG(ASA),∴DF=PG,而PD=PG,∴DF=PD,∵線段PG繞點P逆時針旋轉(zhuǎn)90°得到線段PE,∴∠EPG=90°,PE=PG,∴PE=PD=DF,而DF⊥PG,∴DF∥PE,即DF∥PE,且DF=PE,∴四邊形PEFD為平行四邊形,在Rt△PCD中,PC=1,CD=3,∴PD==,∴DF=PG=PD=,∵四邊形CDMP是矩形,∴PM=CD=3,MD=PC=1,∵PD=PG,PM⊥AD,∴MG=MD=1,DG=2,∵∠GDH=∠MPG,∠DHG=∠PMG=90°,∴△DHG∽△PMG,∴,∴GH==,∴PH=PG﹣GH=﹣=,∴四邊形PEFD的面積=DF?PH=×=1.【點睛】本題考查了平行四邊形的面積、勾股定理、相似三角形判定、全等三角形性質(zhì),本題的關(guān)鍵是求邊長和高的值21、(1)證明見解析;(2)4.【解析】

(1)首先證明△ABC≌△DFE可得∠ACE=∠DEF,進而可得AC∥DE;(2)根據(jù)△ABC≌△DFE可得BC=EF,利用等式的性質(zhì)可得EB=CF,再由BF=13,EC=5進而可得EB的長,然后可得答案.【詳解】解:(1)在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB=4,∴CB=4+5=1.【點睛】考點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論