2023-2024學(xué)年浙江省嘉興市海鹽縣中考數(shù)學(xué)猜題卷含解析_第1頁
2023-2024學(xué)年浙江省嘉興市海鹽縣中考數(shù)學(xué)猜題卷含解析_第2頁
2023-2024學(xué)年浙江省嘉興市海鹽縣中考數(shù)學(xué)猜題卷含解析_第3頁
2023-2024學(xué)年浙江省嘉興市海鹽縣中考數(shù)學(xué)猜題卷含解析_第4頁
2023-2024學(xué)年浙江省嘉興市海鹽縣中考數(shù)學(xué)猜題卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年浙江省嘉興市海鹽縣中考數(shù)學(xué)猜題卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在一個不透明的袋子里裝有兩個黃球和一個白球,它們除顏色外都相同,隨機(jī)從中摸出一個球,記下顏色后放回袋子中,充分搖勻后,再隨機(jī)摸出一個球.兩次都摸到黃球的概率是()A. B. C. D.2.tan45o的值為()A. B.1 C. D.3.如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E.如果點(diǎn)M是OP的中點(diǎn),則DM的長是()A.2 B. C. D.24.下列判斷錯誤的是()A.兩組對邊分別相等的四邊形是平行四邊形 B.四個內(nèi)角都相等的四邊形是矩形C.兩條對角線垂直且平分的四邊形是正方形 D.四條邊都相等的四邊形是菱形5.如圖,在中,、分別為、邊上的點(diǎn),,與相交于點(diǎn),則下列結(jié)論一定正確的是()A. B.C. D.6.下列美麗的壯錦圖案是中心對稱圖形的是()A. B. C. D.7.某射擊運(yùn)動員練習(xí)射擊,5次成績分別是:8、9、7、8、x(單位:環(huán)).下列說法中正確的是()A.若這5次成績的中位數(shù)為8,則x=8B.若這5次成績的眾數(shù)是8,則x=8C.若這5次成績的方差為8,則x=8D.若這5次成績的平均成績是8,則x=88.如圖,點(diǎn)A、B在數(shù)軸上表示的數(shù)的絕對值相等,且,那么點(diǎn)A表示的數(shù)是A. B. C. D.39.下列各類數(shù)中,與數(shù)軸上的點(diǎn)存在一一對應(yīng)關(guān)系的是()A.有理數(shù)B.實(shí)數(shù)C.分?jǐn)?shù)D.整數(shù)10.在Rt△ABC中,∠C=90°,AC=1,BC=3,則∠A的正切值為()A.3 B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,某城市的電視塔AB坐落在湖邊,數(shù)學(xué)老師帶領(lǐng)學(xué)生隔湖測量電視塔AB的高度,在點(diǎn)M處測得塔尖點(diǎn)A的仰角∠AMB為22.5°,沿射線MB方向前進(jìn)200米到達(dá)湖邊點(diǎn)N處,測得塔尖點(diǎn)A在湖中的倒影A′的俯角∠A′NB為45°,則電視塔AB的高度為______米(結(jié)果保留根號).12.一個n邊形的每個內(nèi)角都為144°,則邊數(shù)n為______.13.若一個多邊形的每一個外角都等于40°,則這個多邊形的邊數(shù)是.14.從﹣2,﹣1,2這三個數(shù)中任取兩個不同的數(shù)相乘,積為正數(shù)的概率是_____.15.如圖,一個直角三角形紙片,剪去直角后,得到一個四邊形,則∠1+∠2=_______度.16.與是位似圖形,且對應(yīng)面積比為4:9,則與的位似比為______.17.已知二次函數(shù)的圖象如圖所示,有下列結(jié)論:,,;,,其中正確的結(jié)論序號是______三、解答題(共7小題,滿分69分)18.(10分)(2016湖南省株洲市)某市對初二綜合素質(zhì)測評中的審美與藝術(shù)進(jìn)行考核,規(guī)定如下:考核綜合評價得分由測試成績(滿分100分)和平時成績(滿分100分)兩部分組成,其中測試成績占80%,平時成績占20%,并且當(dāng)綜合評價得分大于或等于80分時,該生綜合評價為A等.(1)孔明同學(xué)的測試成績和平時成績兩項(xiàng)得分之和為185分,而綜合評價得分為91分,則孔明同學(xué)測試成績和平時成績各得多少分?(2)某同學(xué)測試成績?yōu)?0分,他的綜合評價得分有可能達(dá)到A等嗎?為什么?(3)如果一個同學(xué)綜合評價要達(dá)到A等,他的測試成績至少要多少分?19.(5分)一輛快車從甲地開往乙地,一輛慢車從乙地開往甲地,兩車同時出發(fā),設(shè)慢車離乙地的距離為y1(km),快車離乙地的距離為y2(km),慢車行駛時間為x(h),兩車之間的距離為S(km),y1,y2與x的函數(shù)關(guān)系圖象如圖①所示,S與x的函數(shù)關(guān)系圖象如圖②所示:(1)圖中的a=______,b=______.(2)求快車在行駛的過程中S關(guān)于x的函數(shù)關(guān)系式.(3)直接寫出兩車出發(fā)多長時間相距200km?20.(8分)如圖,AB是⊙O的直徑,D為⊙O上一點(diǎn),過弧BD上一點(diǎn)T作⊙O的切線TC,且TC⊥AD于點(diǎn)C.(1)若∠DAB=50°,求∠ATC的度數(shù);(2)若⊙O半徑為2,TC=3,求AD的長.21.(10分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一塊等腰直角三角板的直角頂點(diǎn)放在C處,CP=CQ=2,將三角板CPQ繞點(diǎn)C旋轉(zhuǎn)(保持點(diǎn)P在△ABC內(nèi)部),連接AP、BP、BQ.如圖1求證:AP=BQ;如圖2當(dāng)三角板CPQ繞點(diǎn)C旋轉(zhuǎn)到點(diǎn)A、P、Q在同一直線時,求AP的長;設(shè)射線AP與射線BQ相交于點(diǎn)E,連接EC,寫出旋轉(zhuǎn)過程中EP、EQ、EC之間的數(shù)量關(guān)系.22.(10分)閱讀下面材料,并解答問題.材料:將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式.解:由分母為﹣x2+1,可設(shè)﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b則﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵對應(yīng)任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+這樣,分式被拆分成了一個整式x2+2與一個分式的和.解答:將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式.試說明的最小值為1.23.(12分)如圖,二次函數(shù)y=ax2+2x+c的圖象與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3).(1)求該二次函數(shù)的表達(dá)式;(2)過點(diǎn)A的直線AD∥BC且交拋物線于另一點(diǎn)D,求直線AD的函數(shù)表達(dá)式;(3)在(2)的條件下,請解答下列問題:①在x軸上是否存在一點(diǎn)P,使得以B、C、P為頂點(diǎn)的三角形與△ABD相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;②動點(diǎn)M以每秒1個單位的速度沿線段AD從點(diǎn)A向點(diǎn)D運(yùn)動,同時,動點(diǎn)N以每秒個單位的速度沿線段DB從點(diǎn)D向點(diǎn)B運(yùn)動,問:在運(yùn)動過程中,當(dāng)運(yùn)動時間t為何值時,△DMN的面積最大,并求出這個最大值.24.(14分)實(shí)踐體驗(yàn):(1)如圖1:四邊形ABCD是矩形,試在AD邊上找一點(diǎn)P,使△BCP為等腰三角形;(2)如圖2:矩形ABCD中,AB=13,AD=12,點(diǎn)E在AB邊上,BE=3,點(diǎn)P是矩形ABCD內(nèi)或邊上一點(diǎn),且PE=5,點(diǎn)Q是CD邊上一點(diǎn),求PQ得最值;問題解決:(3)如圖3,四邊形ABCD中,AD∥BC,∠C=90°,AD=3,BC=6,DC=4,點(diǎn)E在AB邊上,BE=2,點(diǎn)P是四邊形ABCD內(nèi)或邊上一點(diǎn),且PE=2,求四邊形PADC面積的最值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

首先根據(jù)題意畫出樹狀圖,由樹狀圖求得所有等可能的結(jié)果與兩次都摸到黃球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實(shí)驗(yàn).【詳解】畫樹狀圖如下:由樹狀圖可知,共有9種等可能結(jié)果,其中兩次都摸到黃球的有4種結(jié)果,∴兩次都摸到黃球的概率為,故選A.【點(diǎn)睛】此題考查的是用列表法或樹狀圖法求概率的知識.注意畫樹狀圖與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).2、B【解析】

解:根據(jù)特殊角的三角函數(shù)值可得tan45o=1,故選B.【點(diǎn)睛】本題考查特殊角的三角函數(shù)值.3、C【解析】

由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性質(zhì),即可求得PE的值,繼而求得OP的長,然后由直角三角形斜邊上的中線等于斜邊的一半,即可求得DM的長.【詳解】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE=,∴OP=2PE=2,∵PD⊥OA,點(diǎn)M是OP的中點(diǎn),∴DM=OP=.故選C.考點(diǎn):角平分線的性質(zhì);含30度角的直角三角形;直角三角形斜邊上的中線;勾股定理.4、C【解析】

根據(jù)平行四邊形的判定,矩形的判定,菱形的判定,正方形的判定,對選項(xiàng)進(jìn)行判斷即可【詳解】解:A、兩組對邊分別相等的四邊形是平行四邊形,故本選項(xiàng)正確;B、四個內(nèi)角都相等的四邊形是矩形,故本選項(xiàng)正確;C、兩條對角線垂直且平分的四邊形是菱形,不一定是正方形,故本選項(xiàng)錯誤;D、四條邊都相等的四邊形是菱形,故本選項(xiàng)正確.故選C【點(diǎn)睛】此題綜合考查了平行四邊形的判定,矩形的判定,菱形的判定,正方形的判定,熟練掌握判定法則才是解題關(guān)鍵5、A【解析】

根據(jù)平行線分線段成比例定理逐項(xiàng)分析即可.【詳解】A.∵,∴,,∴,故A正確;B.∵,∴,故B不正確;C.∵,∴,故C不正確;D.∵,∴,故D不正確;故選A.【點(diǎn)睛】本題考查了平行線分線段成比例定理,平行線分線段成比例定理指的是兩條直線被一組平行線所截,截得的對應(yīng)線段的長度成比例.推論:平行于三角形一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形的三邊對應(yīng)成比例.6、A【解析】【分析】根據(jù)中心對稱圖形的定義逐項(xiàng)進(jìn)行判斷即可得.【詳解】A、是中心對稱圖形,故此選項(xiàng)正確;B、不是中心對稱圖形,故此選項(xiàng)錯誤;C、不是中心對稱圖形,故此選項(xiàng)錯誤;D、不是中心對稱圖形,故此選項(xiàng)錯誤,故選A.【點(diǎn)睛】本題主要考查了中心對稱圖形,熟練掌握中心對稱圖形的定義是解題的關(guān)鍵;把一個圖形繞某一點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形.7、D【解析】

根據(jù)中位數(shù)的定義判斷A;根據(jù)眾數(shù)的定義判斷B;根據(jù)方差的定義判斷C;根據(jù)平均數(shù)的定義判斷D.【詳解】A、若這5次成績的中位數(shù)為8,則x為任意實(shí)數(shù),故本選項(xiàng)錯誤;B、若這5次成績的眾數(shù)是8,則x為不是7與9的任意實(shí)數(shù),故本選項(xiàng)錯誤;C、如果x=8,則平均數(shù)為(8+9+7+8+8)=8,方差為[3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本選項(xiàng)錯誤;D、若這5次成績的平均成績是8,則(8+9+7+8+x)=8,解得x=8,故本選項(xiàng)正確;

故選D.【點(diǎn)睛】本題考查中位數(shù)、眾數(shù)、平均數(shù)和方差:一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差,它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.8、B【解析】

如果點(diǎn)A,B表示的數(shù)的絕對值相等,那么AB的中點(diǎn)即為坐標(biāo)原點(diǎn).【詳解】解:如圖,AB的中點(diǎn)即數(shù)軸的原點(diǎn)O.

根據(jù)數(shù)軸可以得到點(diǎn)A表示的數(shù)是.

故選:B.【點(diǎn)睛】此題考查了數(shù)軸有關(guān)內(nèi)容,用幾何方法借助數(shù)軸來求解,非常直觀,體現(xiàn)了數(shù)形結(jié)合的優(yōu)點(diǎn)確定數(shù)軸的原點(diǎn)是解決本題的關(guān)鍵.9、B【解析】

根據(jù)實(shí)數(shù)與數(shù)軸上的點(diǎn)存在一一對應(yīng)關(guān)系解答.【詳解】實(shí)數(shù)與數(shù)軸上的點(diǎn)存在一一對應(yīng)關(guān)系,故選:B.【點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸上點(diǎn)的關(guān)系,每一個實(shí)數(shù)都可以用數(shù)軸上唯一的點(diǎn)來表示,反過來,數(shù)軸上的每個點(diǎn)都表示一個唯一的實(shí)數(shù),也就是說實(shí)數(shù)與數(shù)軸上的點(diǎn)一一對應(yīng).10、A【解析】【分析】根據(jù)銳角三角函數(shù)的定義求出即可.【詳解】∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值為=3,故選A.【點(diǎn)睛】本題考查了銳角三角函數(shù)的定義,能熟記銳角三角函數(shù)的定義的內(nèi)容是解此題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、.【解析】解:如圖,連接AN,由題意知,BM⊥AA',BA=BA',∴AN=A'N,∴∠ANB=∠A'NB=45°,∵∠AMB=22.5°,∴∠MAN=∠ANB﹣∠AMB=22.5°=∠AMN,∴AN=MN=200米,在Rt△ABN中,∠ANB=45°,∴AB=AN=(米),故答案為.點(diǎn)睛:此題是解直角三角形的應(yīng)用﹣﹣﹣仰角和俯角,主要考查了垂直平分線的性質(zhì),等腰三角形的性質(zhì),解本題的關(guān)鍵是求出∠ANB=45°.12、10【解析】

解:因?yàn)檎噙呅蔚拿總€內(nèi)角都相等,每個外角都相等,根據(jù)相鄰兩個內(nèi)角和外角關(guān)系互補(bǔ),可以求出這個多邊形的每個外角等于36°,因?yàn)槎噙呅蔚耐饨呛褪?60°,所以這個多邊形的邊數(shù)等于360°÷36°=10,故答案為:1013、9【解析】解:360÷40=9,即這個多邊形的邊數(shù)是914、【解析】

首先根據(jù)題意列出表格,然后由表格即可求得所有等可能的結(jié)果與積為正數(shù)的情況,再利用概率公式求解即可求得答案.【詳解】列表如下:﹣2﹣12﹣22﹣4﹣12﹣22﹣4﹣2由表可知,共有6種等可能結(jié)果,其中積為正數(shù)的有2種結(jié)果,所以積為正數(shù)的概率為,故答案為.【點(diǎn)睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.15、270【解析】

根據(jù)三角形的內(nèi)角和與平角定義可求解.【詳解】解析:如圖,根據(jù)題意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°,故答案為:270度.【點(diǎn)睛】本題主要考查了三角形的內(nèi)角和定理和內(nèi)角與外角之間的關(guān)系.要會熟練運(yùn)用內(nèi)角和定理求角的度數(shù).16、2:1【解析】

由相似三角形的面積比等于相似比的平方,即可求得與的位似比.【詳解】解與是位似圖形,且對應(yīng)面積比為4:9,與的相似比為2:1,故答案為:2:1.【點(diǎn)睛】本題考查了位似的相關(guān)知識,位似是相似的特殊形式,位似比等于相似比,其對應(yīng)的面積比等于相似比的平方.17、【解析】

由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點(diǎn)判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對所得結(jié)論進(jìn)行判斷.【詳解】由圖象可知:拋物線開口方向向下,則,對稱軸直線位于y軸右側(cè),則a、b異號,即,拋物線與y軸交于正半軸,則,,故正確;對稱軸為,,故正確;由拋物線的對稱性知,拋物線與x軸的另一個交點(diǎn)坐標(biāo)為,所以當(dāng)時,,即,故正確;拋物線與x軸有兩個不同的交點(diǎn),則,所以,故錯誤;當(dāng)時,,故正確.故答案為.【點(diǎn)睛】本題考查了考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,二次函數(shù)系數(shù)符號由拋物線開口方向、對稱軸和拋物線與y軸的交點(diǎn)、拋物線與x軸交點(diǎn)的個數(shù)確定.三、解答題(共7小題,滿分69分)18、(1)孔明同學(xué)測試成績位90分,平時成績?yōu)?5分;(2)不可能;(3)他的測試成績應(yīng)該至少為1分.【解析】試題分析:(1)分別利用孔明同學(xué)的測試成績和平時成績兩項(xiàng)得分之和為185分,而綜合評價得分為91分,分別得出等式求出答案;(2)利用測試成績占80%,平時成績占20%,進(jìn)而得出答案;(3)首先假設(shè)平時成績?yōu)闈M分,進(jìn)而得出不等式,求出測試成績的最小值.試題解析:(1)設(shè)孔明同學(xué)測試成績?yōu)閤分,平時成績?yōu)閥分,依題意得:,解之得:.答:孔明同學(xué)測試成績位90分,平時成績?yōu)?5分;(2)由題意可得:80﹣70×80%=24,24÷20%=120>100,故不可能.(3)設(shè)平時成績?yōu)闈M分,即100分,綜合成績?yōu)?00×20%=20,設(shè)測試成績?yōu)閍分,根據(jù)題意可得:20+80%a≥80,解得:a≥1.答:他的測試成績應(yīng)該至少為1分.考點(diǎn):一元一次不等式的應(yīng)用;二元一次方程組的應(yīng)用.19、(1)a=6,b=;(2);(3)或5h【解析】

(1)根據(jù)S與x之間的函數(shù)關(guān)系式可以得到當(dāng)位于C點(diǎn)時,兩人之間的距離增加變緩,此時快車到站,指出此時a的值即可,求得a的值后求出兩車相遇時的時間即為b的值;(2)根據(jù)函數(shù)的圖像可以得到A、B、C、D的點(diǎn)的坐標(biāo),利用待定系數(shù)法求得函數(shù)的解析式即可.(3)分兩車相遇前和兩車相遇后兩種情況討論,當(dāng)相遇前令s=200即可求得x的值.【詳解】解:(1)由s與x之間的函數(shù)的圖像可知:當(dāng)位于C點(diǎn)時,兩車之間的距離增加變緩,由此可以得到a=6,∵快車每小時行駛100千米,慢車每小時行駛60千米,兩地之間的距離為600,∴;(2)∵從函數(shù)的圖象上可以得到A、B、C、D點(diǎn)的坐標(biāo)分別為:(0,600)、(,0)、(6,360)、(10,600),∴設(shè)線段AB所在直線解析式為:S=kx+b,∴解得:k=-160,b=600,設(shè)線段BC所在的直線的解析式為:S=kx+b,∴解得:k=160,b=-600,設(shè)直線CD的解析式為:S=kx+b,解得:k=60,b=0∴(3)當(dāng)兩車相遇前相距200km,此時:S=-160x+600=200,解得:,當(dāng)兩車相遇后相距200km,此時:S=160x-600=200,解得:x=5,∴或5時兩車相距200千米【點(diǎn)睛】本題考查了一次函數(shù)的綜合知識,特別是本題中涉及到了分段函數(shù)的知識,解題時主要自變量的取值范圍.20、(2)65°;(2)2.【解析】試題分析:(2)連接OT,根據(jù)角平分線的性質(zhì),以及直角三角形的兩個銳角互余,證得CT⊥OT,CT為⊙O的切線;(2)證明四邊形OTCE為矩形,求得OE的長,在直角△OAE中,利用勾股定理即可求解.試題解析:(2)連接OT,∵OA=OT,∴∠OAT=∠OTA,又∵AT平分∠BAD,∴∠DAT=∠OAT,∴∠DAT=∠OTA,∴OT∥AC,又∵CT⊥AC,∴CT⊥OT,∴CT為⊙O的切線;(2)過O作OE⊥AD于E,則E為AD中點(diǎn),又∵CT⊥AC,∴OE∥CT,∴四邊形OTCE為矩形,∵CT=,∴OE=,又∵OA=2,∴在Rt△OAE中,AE=,∴AD=2AE=2.考點(diǎn):2.切線的判定與性質(zhì);2.勾股定理;3.圓周角定理.21、(1)證明見解析(2)(3)EP+EQ=EC【解析】

(1)由題意可得:∠ACP=∠BCQ,即可證△ACP≌△BCQ,可得AP=CQ;作CH⊥PQ于H,由題意可求PQ=2,可得CH=,根據(jù)勾股定理可求AH=,即可求AP的長;作CM⊥BQ于M,CN⊥EP于N,設(shè)BC交AE于O,由題意可證△CNP≌△CMQ,可得CN=CM,QM=PN,即可證Rt△CEM≌Rt△CEN,EN=EM,∠CEM=∠CEN=45°,則可求得EP、EQ、EC之間的數(shù)量關(guān)系.【詳解】解:(1)如圖1中,∵∠ACB=∠PCQ=90°,∴∠ACP=∠BCQ且AC=BC,CP=CQ∴△ACP≌△BCQ(SAS)∴PA=BQ如圖2中,作CH⊥PQ于H∵A、P、Q共線,PC=2,∴PQ=2,∵PC=CQ,CH⊥PQ∴CH=PH=在Rt△ACH中,AH==∴PA=AH﹣PH=-解:結(jié)論:EP+EQ=EC理由:如圖3中,作CM⊥BQ于M,CN⊥EP于N,設(shè)BC交AE于O.∵△ACP≌△BCQ,∴∠CAO=∠OBE,∵∠AOC=∠BOE,∴∠OEB=∠ACO=90°,∵∠M=∠CNE=∠MEN=90°,∴∠MCN=∠PCQ=90°,∴∠PCN=∠QCM,∵PC=CQ,∠CNP=∠M=90°,∴△CNP≌△CMQ(AAS),∴CN=CM,QM=PN,∴CE=CE,∴Rt△CEM≌Rt△CEN(HL),∴EN=EM,∠CEM=∠CEN=45°∴EP+EQ=EN+PN+EM﹣MQ=2EN,EC=EN,∴EP+EQ=EC【點(diǎn)睛】本題考查幾何變換綜合題,解答關(guān)鍵是等腰直角三角形的性質(zhì),全等三角形的性質(zhì)和判定,添加恰當(dāng)輔助線構(gòu)造全等三角形.22、(1)=x2+7+(2)見解析【解析】

(1)根據(jù)閱讀材料中的方法將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式即可;(2)原式分子變形后,利用不等式的性質(zhì)求出最小值即可.【詳解】(1)設(shè)﹣x4﹣6x+1=(﹣x2+1)(x2+a)+b=﹣x4+(1﹣a)x2+a+b,可得,解得:a=7,b=1,則原式=x2+7+;(2)由(1)可知,=x2+7+.∵x2≥0,∴x2+7≥7;當(dāng)x=0時,取得最小值0,∴當(dāng)x=0時,x2+7+最小值為1,即原式的最小值為1.23、(1)y=﹣x2+2x+3;(2)y=﹣x﹣1;(3)P()或P(﹣4.5,0);當(dāng)t=時,S△MDN的最大值為.【解析】

(1)把A(-1,0),C(0,3)代入y=ax2+2x+c即可得到結(jié)果;

(2)在y=-x2+2x+3中,令y=0,則-x2+2x+3=0,得到B(3,0),由已知條件得直線BC的解析式為y=-x+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論