高考數(shù)學一輪復習考點探究與題型突破第47講兩直線的位置關系(原卷版+解析)_第1頁
高考數(shù)學一輪復習考點探究與題型突破第47講兩直線的位置關系(原卷版+解析)_第2頁
高考數(shù)學一輪復習考點探究與題型突破第47講兩直線的位置關系(原卷版+解析)_第3頁
高考數(shù)學一輪復習考點探究與題型突破第47講兩直線的位置關系(原卷版+解析)_第4頁
高考數(shù)學一輪復習考點探究與題型突破第47講兩直線的位置關系(原卷版+解析)_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

第47講兩直線的位置關系1.兩條直線平行與垂直的判定(1)兩條直線平行對于兩條不重合的直線l1,l2,其斜率分別為k1,k2,則有l(wèi)1∥l2?k1=k2.特別地,當直線l1,l2的斜率都不存在時,l1與l2平行.(2)兩條直線垂直如果兩條直線l1,l2斜率都存在,設為k1,k2,則l1⊥l2?k1·k2=-1,當一條直線斜率為零,另一條直線斜率不存在時,兩條直線垂直.2.直線的交點與直線的方程組成的方程組的解的關系(1)兩直線的交點點P的坐標既滿足直線l1的方程A1x+B1y+C1=0,也滿足直線l2的方程A2x+B2y+C2=0,即點P的坐標是方程組eq\b\lc\{(\a\vs4\al\co1(A1x+B1y+C1=0,,A2x+B2y+C2=0))的解,解這個方程組就可以得到這兩條直線的交點坐標.(2)兩直線的位置關系方程組eq\b\lc\{(\a\vs4\al\co1(A1x+B1y+C1=0,,A2x+B2y+C2=0))的解一組無數(shù)組無解直線l1與l2的公共點的個數(shù)一個無數(shù)個零個直線l1與l2的位置關系相交重合平行3.距離公式(1)兩點間的距離公式平面上任意兩點P1(x1,y1),P2(x2,y2)間的距離公式為|P1P2|=eq\r((x2-x1)2+(y2-y1)2).特別地,原點O(0,0)與任一點P(x,y)的距離|OP|=eq\r(x2+y2).(2)點到直線的距離公式平面上任意一點P0(x0,y0)到直線l:Ax+By+C=0的距離d=eq\f(|Ax0+By0+C|,\r(A2+B2)).(3)兩條平行線間的距離公式一般地,兩條平行直線l1:Ax+By+C1=0,l2:Ax+By+C2=0間的距離d=eq\f(|C1-C2|,\r(A2+B2)).4.對稱問題(1)點P(x0,y0)關于點A(a,b)的對稱點為P′(2a-x0,2b-y0).(2)設點P(x0,y0)關于直線y=kx+b的對稱點為P′(x′,y′),則有eq\b\lc\{(\a\vs4\al\co1(\f(y′-y0,x′-x0)·k=-1,,\f(y′+y0,2)=k·\f(x′+x0,2)+b,))可求出x′,y′.考點1兩條直線的平行與垂直[名師點睛]1.當含參數(shù)的直線方程為一般式時,若要表示出直線的斜率,不僅要考慮到斜率存在的一般情況,也要考慮到斜率不存在的特殊情況,同時還要注意x,y的系數(shù)不能同時為零這一隱含條件.2.在判斷兩直線的平行、垂直時,也可直接利用直線方程的系數(shù)間的關系得出結論.[典例]1.(2023·杭州模擬)已知直線l1:ax+(a+2)y+1=0,l2:x+ay+2=0(a∈R),則“ea=eq\f(1,e)”是“l(fā)1∥l2”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件2.(2023·長春模擬)已知直線l經(jīng)過點(1,-1),且與直線2x-y-5=0垂直,則直線l的方程為()A.2x+y-1=0 B.x-2y-3=0C.x+2y+1=0 D.2x-y-3=03.(2023·荊門模擬)數(shù)學家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半.這條直線被后人稱為三角形的歐拉線,已知△ABC的頂點A(2,0),B(1,2),且AC=BC,則△ABC的歐拉線的方程為()A.x-2y-4=0 B.2x+y-4=0C.4x+2y+1=0 D.2x-4y+1=0[舉一反三]1.已知m,n∈R,則“直線x+my-1=0與nx+y+1=0平行”是“mn=1”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分又不必要條件2.(2023·煙臺期末)若直線l1:(k-3)x+(k+4)y+1=0與l2:(k+1)x+2(k-3)y+3=0垂直,則實數(shù)k的值是()A.3或-3 B.3或4C.-3或-1 D.-1或43.經(jīng)過兩條直線2x+3y+1=0和x-3y+4=0的交點,并且垂直于直線3x+4y-7=0的直線方程為________.4.(多選)已知直線l1:x+my-1=0,l2:(m-2)x+3y+3=0,則下列說法正確的是()A.若l1∥l2,則m=-1或m=3B.若l1∥l2,則m=3C.若l1⊥l2,則m=-eq\f(1,2)D.若l1⊥l2,則m=eq\f(1,2)考點2兩直線的交點與距離問題[名師點睛](1)求過兩直線交點的直線方程的方法:先求出兩直線的交點坐標,再結合其他條件寫出直線方程.(2)利用距離公式應注意:①點P(x0,y0)到直線x=a的距離d=|x0-a|,到直線y=b的距離d=|y0-b|;②兩平行線間的距離公式要把兩直線方程中x,y的系數(shù)化為相等.[典例]1.已知直線y=kx+2k+1與直線y=-eq\f(1,2)x+2的交點位于第一象限,則實數(shù)k的取值范圍是________.2.(2023·湖州調(diào)研)已知點P(4,a)到直線4x-3y-1=0的距離不大于3,則a的取值范圍是________.3.若兩平行直線3x-2y-1=0,6x+ay+c=0之間的距離為eq\f(2\r(13),13),則c的值是________.[舉一反三]1.兩條平行直線2x-y+3=0和ax+3y-4=0間的距離為d,則a,d的值分別為()A.a(chǎn)=6,d=eq\f(\r(6),3) B.a(chǎn)=-6,d=eq\f(\r(5),3)C.a(chǎn)=6,d=eq\f(\r(5),3) D.a(chǎn)=-6,d=eq\f(\r(6),3)2.已知直線經(jīng)過點(1,2),并且與點(2,3)和(0,-5)的距離相等,則此直線的方程為________________.3.(多選)(2023·濟南調(diào)研)已知直線l1:2x+3y-1=0和l2:4x+6y-9=0,若直線l到直線l1的距離與到直線l2的距離之比為1∶2,則直線l的方程為()A.2x+3y-8=0 B.4x+6y+5=0C.6x+9y-10=0 D.12x+18y-13=0考點3對稱問題[名師點睛](1)光的反射問題實質(zhì)是點關于直線的對稱問題,要注意轉(zhuǎn)化.(2)直線關于點的對稱:直線關于點的對稱可轉(zhuǎn)化為點關于點的對稱問題來解決,也可考慮利用兩條對稱直線是相互平行的,并利用對稱中心到兩條直線的距離相等求解.(3)求直線l1關于直線l對稱的直線l2,有兩種處理方法:①在直線l1上取兩點(一般取特殊點),利用求點關于直線的對稱點的方法求出這兩點關于直線l的對稱點,再用兩點式寫出直線l2的方程.②設點P(x,y)是直線l2上任意一點,其關于直線l的對稱點為P1(x1,y1)(P1在直線l1上),根據(jù)點關于直線對稱建立方程組,用x,y表示出x1,y1,再代入直線l1的方程,即得直線l2的方程.[典例]1.過點P(0,1)作直線l,使它被直線l1:2x+y-8=0和l2:x-3y+10=0截得的線段被點P平分,則直線l的方程為________________.2.已知入射光線經(jīng)過點M(-3,4),被直線l:x-y+3=0反射,反射光線經(jīng)過點N(2,6),則反射光線所在直線的方程為________.3.直線2x-y+3=0關于直線x-y+2=0對稱的直線方程是________________.[舉一反三]1.直線2x-4y-1=0關于x+y=0對稱的直線方程為()A.4x-2y-1=0 B.4x-2y+1=0C.4x+2y+1=0 D.4x+2y-1=02.在等腰直角三角形ABC中,AB=AC=4,點P是邊AB上異于A,B的一點.光線從點P出發(fā),經(jīng)BC,CA反射后又回到點P(如圖所示).若光線QR經(jīng)過△ABC的重心,則AP的長度為()A.2B.1C.eq\f(8,3)D.eq\f(4,3)3.已知直線l:2x-3y+1=0,點A(-1,-2).求:(1)點A關于直線l的對稱點A′的坐標;(2)直線m:3x-2y-6=0關于直線l的對稱直線m′的方程;(3)直線l關于點A的對稱直線l′的方程.第47講兩直線的位置關系1.兩條直線平行與垂直的判定(1)兩條直線平行對于兩條不重合的直線l1,l2,其斜率分別為k1,k2,則有l(wèi)1∥l2?k1=k2.特別地,當直線l1,l2的斜率都不存在時,l1與l2平行.(2)兩條直線垂直如果兩條直線l1,l2斜率都存在,設為k1,k2,則l1⊥l2?k1·k2=-1,當一條直線斜率為零,另一條直線斜率不存在時,兩條直線垂直.2.直線的交點與直線的方程組成的方程組的解的關系(1)兩直線的交點點P的坐標既滿足直線l1的方程A1x+B1y+C1=0,也滿足直線l2的方程A2x+B2y+C2=0,即點P的坐標是方程組eq\b\lc\{(\a\vs4\al\co1(A1x+B1y+C1=0,,A2x+B2y+C2=0))的解,解這個方程組就可以得到這兩條直線的交點坐標.(2)兩直線的位置關系方程組eq\b\lc\{(\a\vs4\al\co1(A1x+B1y+C1=0,,A2x+B2y+C2=0))的解一組無數(shù)組無解直線l1與l2的公共點的個數(shù)一個無數(shù)個零個直線l1與l2的位置關系相交重合平行3.距離公式(1)兩點間的距離公式平面上任意兩點P1(x1,y1),P2(x2,y2)間的距離公式為|P1P2|=eq\r((x2-x1)2+(y2-y1)2).特別地,原點O(0,0)與任一點P(x,y)的距離|OP|=eq\r(x2+y2).(2)點到直線的距離公式平面上任意一點P0(x0,y0)到直線l:Ax+By+C=0的距離d=eq\f(|Ax0+By0+C|,\r(A2+B2)).(3)兩條平行線間的距離公式一般地,兩條平行直線l1:Ax+By+C1=0,l2:Ax+By+C2=0間的距離d=eq\f(|C1-C2|,\r(A2+B2)).4.對稱問題(1)點P(x0,y0)關于點A(a,b)的對稱點為P′(2a-x0,2b-y0).(2)設點P(x0,y0)關于直線y=kx+b的對稱點為P′(x′,y′),則有eq\b\lc\{(\a\vs4\al\co1(\f(y′-y0,x′-x0)·k=-1,,\f(y′+y0,2)=k·\f(x′+x0,2)+b,))可求出x′,y′.考點1兩條直線的平行與垂直[名師點睛]1.當含參數(shù)的直線方程為一般式時,若要表示出直線的斜率,不僅要考慮到斜率存在的一般情況,也要考慮到斜率不存在的特殊情況,同時還要注意x,y的系數(shù)不能同時為零這一隱含條件.2.在判斷兩直線的平行、垂直時,也可直接利用直線方程的系數(shù)間的關系得出結論.[典例]1.(2023·杭州模擬)已知直線l1:ax+(a+2)y+1=0,l2:x+ay+2=0(a∈R),則“ea=eq\f(1,e)”是“l(fā)1∥l2”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案A解析當l1∥l2時,eq\b\lc\{\rc\(\a\vs4\al\co1(a2-a+2=0,,2a-1≠0,))解得a=-1或a=2.而由ea=eq\f(1,e),解得a=-1,所以“ea=eq\f(1,e)”是“l(fā)1∥l2”的充分不必要條件.2.(2023·長春模擬)已知直線l經(jīng)過點(1,-1),且與直線2x-y-5=0垂直,則直線l的方程為()A.2x+y-1=0 B.x-2y-3=0C.x+2y+1=0 D.2x-y-3=0答案C解析∵直線l與直線2x-y-5=0垂直,∴設直線l的方程為x+2y+c=0,∵直線l經(jīng)過點(1,-1),∴1-2+c=0,即c=1.直線l的方程為x+2y+1=0.3.(2023·荊門模擬)數(shù)學家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半.這條直線被后人稱為三角形的歐拉線,已知△ABC的頂點A(2,0),B(1,2),且AC=BC,則△ABC的歐拉線的方程為()A.x-2y-4=0 B.2x+y-4=0C.4x+2y+1=0 D.2x-4y+1=0答案D解析由題設,可得kAB=eq\f(2-0,1-2)=-2,且AB的中點為eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2),1)),∴AB垂直平分線的斜率k=-eq\f(1,kAB)=eq\f(1,2),故AB的垂直平分線方程為y=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(3,2)))+1=eq\f(x,2)+eq\f(1,4),∵AC=BC,則△ABC的外心、重心、垂心都在AB的垂直平分線上,∴△ABC的歐拉線的方程為2x-4y+1=0.[舉一反三]1.已知m,n∈R,則“直線x+my-1=0與nx+y+1=0平行”是“mn=1”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分又不必要條件答案A解析直線x+my-1=0與直線nx+y+1=0平行,則eq\f(1,n)=eq\f(m,1)≠eq\f(-1,1),∴mn=1,充分性成立.而m=-1,n=-1時,mn=1,但x-y-1=0與-x+y+1=0重合,必要性不成立.2.(2023·煙臺期末)若直線l1:(k-3)x+(k+4)y+1=0與l2:(k+1)x+2(k-3)y+3=0垂直,則實數(shù)k的值是()A.3或-3 B.3或4C.-3或-1 D.-1或4答案A解析∵直線l1:(k-3)x+(k+4)y+1=0,直線l2:(k+1)x+2(k-3)y+3=0互相垂直,∴(k-3)×(k+1)+(k+4)×2(k-3)=0,即k2-9=0,解得k=3或k=-3.3.經(jīng)過兩條直線2x+3y+1=0和x-3y+4=0的交點,并且垂直于直線3x+4y-7=0的直線方程為________.答案4x-3y+9=0解析法一由方程組eq\b\lc\{(\a\vs4\al\co1(2x+3y+1=0,,x-3y+4=0,))解得eq\b\lc\{(\a\vs4\al\co1(x=-\f(5,3),,y=\f(7,9),))即交點為eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(5,3),\f(7,9))).因為所求直線與直線3x+4y-7=0垂直,所以所求直線的斜率為k=eq\f(4,3).由點斜式得所求直線方程為y-eq\f(7,9)=eq\f(4,3)eq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(5,3))),即4x-3y+9=0.法二由垂直關系可設所求直線方程為4x-3y+m=0.由方程組eq\b\lc\{(\a\vs4\al\co1(2x+3y+1=0,,x-3y+4=0,))可解得交點為eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(5,3),\f(7,9))),代入4x-3y+m=0得m=9,故所求直線方程為4x-3y+9=0.法三由題意可設所求直線的方程為(2x+3y+1)+λ(x-3y+4)=0,即(2+λ)x+(3-3λ)y+1+4λ=0.①又因為所求直線與直線3x+4y-7=0垂直,所以3(2+λ)+4(3-3λ)=0,解得λ=2,代入①式得所求直線方程為4x-3y+9=0.4.(多選)已知直線l1:x+my-1=0,l2:(m-2)x+3y+3=0,則下列說法正確的是()A.若l1∥l2,則m=-1或m=3B.若l1∥l2,則m=3C.若l1⊥l2,則m=-eq\f(1,2)D.若l1⊥l2,則m=eq\f(1,2)答案BD解析若l1∥l2則1×3-m(m-2)=0,解得m=3或m=-1,當m=-1時,l1:x-y-1=0,l2:x-y-1=0,l1與l2重合,∴m=-1(舍去),故m=3,故B正確;若l1⊥l2,則1×(m-2)+m×3=0,解得m=eq\f(1,2),故C不正確,D正確.考點2兩直線的交點與距離問題[名師點睛](1)求過兩直線交點的直線方程的方法:先求出兩直線的交點坐標,再結合其他條件寫出直線方程.(2)利用距離公式應注意:①點P(x0,y0)到直線x=a的距離d=|x0-a|,到直線y=b的距離d=|y0-b|;②兩平行線間的距離公式要把兩直線方程中x,y的系數(shù)化為相等.[典例]1.已知直線y=kx+2k+1與直線y=-eq\f(1,2)x+2的交點位于第一象限,則實數(shù)k的取值范圍是________.答案eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,6),\f(1,2)))解析由方程組eq\b\lc\{(\a\vs4\al\co1(y=kx+2k+1,,y=-\f(1,2)x+2,))解得eq\b\lc\{(\a\vs4\al\co1(x=\f(2-4k,2k+1),,y=\f(6k+1,2k+1),))(若2k+1=0,即k=-eq\f(1,2),則兩直線平行)∴交點坐標為eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2-4k,2k+1),\f(6k+1,2k+1))).又∵交點位于第一象限,∴eq\b\lc\{(\a\vs4\al\co1(\f(2-4k,2k+1)>0,,\f(6k+1,2k+1)>0,))解得-eq\f(1,6)<k<eq\f(1,2).2.(2023·湖州調(diào)研)已知點P(4,a)到直線4x-3y-1=0的距離不大于3,則a的取值范圍是________.答案[0,10]解析由題意得,點P到直線的距離為eq\f(|4×4-3×a-1|,5)=eq\f(|15-3a|,5).又eq\f(|15-3a|,5)≤3,即|15-3a|≤15,解得0≤a≤10,所以a的取值范圍是[0,10].3.若兩平行直線3x-2y-1=0,6x+ay+c=0之間的距離為eq\f(2\r(13),13),則c的值是________.答案2或-6解析由題意得eq\f(3,6)=eq\f(-2,a)≠eq\f(-1,c),∴a=-4,c≠-2,則6x+ay+c=0可化為3x-2y+eq\f(c,2)=0.由兩平行線間的距離公式得eq\f(\b\lc\|\rc\|(\a\vs4\al\co1(\f(c,2)+1)),\r(13))=eq\f(2\r(13),13),即eq\b\lc\|\rc\|(\a\vs4\al\co1(\f(c,2)+1))=2,解得c=2或c=-6.[舉一反三]1.兩條平行直線2x-y+3=0和ax+3y-4=0間的距離為d,則a,d的值分別為()A.a(chǎn)=6,d=eq\f(\r(6),3) B.a(chǎn)=-6,d=eq\f(\r(5),3)C.a(chǎn)=6,d=eq\f(\r(5),3) D.a(chǎn)=-6,d=eq\f(\r(6),3)答案B解析由題知2×3=-a,解得a=-6,又-6x+3y-4=0可化為2x-y+eq\f(4,3)=0,∴d=eq\f(\b\lc\|\rc\|(\a\vs4\al\co1(3-\f(4,3))),\r(5))=eq\f(\r(5),3).2.已知直線經(jīng)過點(1,2),并且與點(2,3)和(0,-5)的距離相等,則此直線的方程為________________.答案4x-y-2=0或x=1解析若所求直線的斜率存在,則可設其方程為y-2=k(x-1),即kx-y-k+2=0,由題設有eq\f(|2k-3-k+2|,\r(1+k2))=eq\f(|0+5-k+2|,\r(1+k2)),即|k-1|=|7-k|,解得k=4.此時直線方程為4x-y-2=0.若所求直線的斜率不存在,則直線方程為x=1,滿足題設條件.故所求直線的方程為4x-y-2=0或x=1.3.(多選)(2023·濟南調(diào)研)已知直線l1:2x+3y-1=0和l2:4x+6y-9=0,若直線l到直線l1的距離與到直線l2的距離之比為1∶2,則直線l的方程為()A.2x+3y-8=0 B.4x+6y+5=0C.6x+9y-10=0 D.12x+18y-13=0答案BD解析設直線l:4x+6y+m=0,m≠-2且m≠-9,直線l到直線l1和l2的距離分別為d1,d2,由題意知d1=eq\f(|m+2|,\r(16+36)),d2=eq\f(|m+9|,\r(16+36)).因為eq\f(d1,d2)=eq\f(1,2),所以eq\f(2|m+2|,\r(16+36))=eq\f(|m+9|,\r(16+36)),即2|m+2|=|m+9|,解得m=5或m=-eq\f(13,3),即直線l為4x+6y+5=0或12x+18y-13=0.考點3對稱問題[名師點睛](1)光的反射問題實質(zhì)是點關于直線的對稱問題,要注意轉(zhuǎn)化.(2)直線關于點的對稱:直線關于點的對稱可轉(zhuǎn)化為點關于點的對稱問題來解決,也可考慮利用兩條對稱直線是相互平行的,并利用對稱中心到兩條直線的距離相等求解.(3)求直線l1關于直線l對稱的直線l2,有兩種處理方法:①在直線l1上取兩點(一般取特殊點),利用求點關于直線的對稱點的方法求出這兩點關于直線l的對稱點,再用兩點式寫出直線l2的方程.②設點P(x,y)是直線l2上任意一點,其關于直線l的對稱點為P1(x1,y1)(P1在直線l1上),根據(jù)點關于直線對稱建立方程組,用x,y表示出x1,y1,再代入直線l1的方程,即得直線l2的方程.[典例]1.過點P(0,1)作直線l,使它被直線l1:2x+y-8=0和l2:x-3y+10=0截得的線段被點P平分,則直線l的方程為________________.答案x+4y-4=0解析設l1與l的交點為A(a,8-2a),則由題意知,點A關于點P的對稱點B(-a,2a-6)在l2上,代入l2的方程得-a-3(2a-6)+10=0,解得a=4,即點A(4,0)在直線l上,所以直線l的方程為x+4y-4=0.2.已知入射光線經(jīng)過點M(-3,4),被直線l:x-y+3=0反射,反射光線經(jīng)過點N(2,6),則反射光線所在直線的方程為________.答案6x-y-6=0解析設點M(-3,4)關于直線l:x-y+3=0的對稱點為M′(a,b),則反射光線所在直線過點M′,所以eq\b\lc\{(\a\vs4\al\co1(\f(b-4,a-(-3))·1=-1,,\f(-3+a,2)-\f(b+4,2)+3=0,))解得a=1,b=0.又反射光線經(jīng)過點N(2,6),所以所求直線的方程為eq\f(y-0,6-0)=eq\f(x-1,2-1),即6x-y-6=0.3.直線2x-y+3=0關于直線x-y+2=0對稱的直線方程是________________.答案x-2y+3=0解析設所求直線上任意一點P(x,y),點P關于x-y+2=0的對稱點為P′(x0,y0),則eq\b\lc\{(\a\vs4\al\co1(\f(x+x0,2)-\f(y+y0,2)+2=0,,x-x0=-(y-y0),))得eq\b\lc\{(\a\vs4\al\co1(x0=y(tǒng)-2,,y0=x+2.))∵點P′(x0,y0)在直線2x-y+3=0上,∴2(y-2)-(x+2)+3=0,即x-2y+3=0.[舉一反三]1.直線2x-4y-1=0關于x+y=0對稱的直線方程為()A.4x-2y-1=0 B.4x-2y+1=0C.4x+2y+1=0 D.4x+2y-1=0答案A解析設直線2x-4y-1=0上一點P(x0,y0)關于直線x+y=0對稱的點的坐標為P′(x,y),則eq\b\lc\{\rc\(\a\vs4\al\co1(\f(y-y0,x-x0)=1,,\f(x+x0,2)+\f(y+y0,2)=0,))整理可得eq\b\lc\{\rc\(\a\vs4\al\co1(x0=-y,,y0=-x,))∴-2y+4x-1=0,即直線2x-4y-1=0關于x+y=0對稱的直線方程為4x-2y-1=0.2.在等腰直角三角形ABC中,AB=AC=4,點P是邊AB上異于A,B的一點.光線從點P出發(fā),經(jīng)BC,CA反射后又回到點P(如圖所示).若光線QR經(jīng)過△ABC的重心,則AP的長度為()A.2B.1C.eq\f(8,3)D.eq\f(4,3)答案D解析以A為原點,AB所在直線為x軸,AC所在直線為y軸,建立如圖所示的平面直角坐標系,由題意可知B(4,0),C(0,4),A(0,0),則直線BC的方程為x+y-4=0.設P(t,0)(0<t<4),可得點P關于直線BC的對稱點P1的坐標為(4,4-t),點P關于y軸的對稱點P2的坐標為(-t,0),根據(jù)反射定律可知直線P1P2就是光線RQ所在的直線,由P1,P2兩點的坐標

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論