版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Chapter1
KinematicsofaParticle§1.1Motionequationofaparticle§1.2
Velocityandaccelerationofaparticle
Maincontents1.1MotionequationofaparticleThreetypicalmotionequation(1)Motionequationusing
vector(2)Motionequationusingrectangularcoordinate1.1Motionequationofaparticle(3)MotionequationusingnaturalcoordinateThreetypicalmotionequationThecrankofellipticcompassescanrotatearoundfixedaxisO,theendAishingedwithBC;ThepointsBandCcanmovealongtheverticalslidingchutes,respectively.FindthetrajectoryequationofaarbitrarypointMonBC.KnownExample11.1MotionequationofaparticleSolution:Consideranarbitraryposition,thecoordinateofMcanbeexpressedasfollowing:Eliminate
intheaboveequations,thetrajectoryequationofMcanbeobtainedas:
1.1Motionequationofaparticle1.2Velocityandaccelerationofaparticle(1)DefinitionforvelocityandaccelerationofaparticleusingvectorDisplacement:Velocity:Acceleration:(2)Definitionforvelocityandaccelerationofaparticleontherectangularcoordinate(3)
ProjectionforvelocityandaccelerationofaparticleonthenaturalaxesTangentNormalplaneOsculatingplanePrincipalnormalSubnormal(a)Naturalcoordinatesystem1.2Velocityandaccelerationofaparticle(3)
Projectionforvelocityandaccelerationofaparticleonthenaturalaxes(b)Velocityofaparticle(c)AccelerationofaparticleThefirstcomponentrepresentsthechangerateofspeedmagnitudefortheparticle,notedas()TangentialaccelerationThesecondcomponentrepresentsthechangerateofspeeddirectionfortheparticle,notedas()Normalacceleration1.2Velocityandaccelerationofaparticle(3)
Projectionforvelocityandaccelerationofaparticleonthenaturalaxes◆Tangentialacceleration◆NormalaccelerationTangentialacceleration
representsthechangerateofspeedmagnitudetotime,itsalgebraicvalueisequaltothefirstderivativeofthealgebraicvalueofvelocitytotime,orthesecondderivativeofcurvilinearcoordinatetotime,itisalongthetangentoftrajectory.
1.2Velocityandaccelerationofaparticle(1)Thevectormethodisusedtodeduceformula;(2)Therectangularcoordinateandnaturalcoordinatemethodsareusedtocalculate:Theadvantageofnaturalcoordinatemethodistheclearphysicalmeaningandmoresimplethanrectangularcoordinatemethod.Thedisadvantageisthetrajectorymustbeknown,whichlimitstheapplicability.Theadvantageofrectangularcoordinatemethodisthewideapplicability(whichcanonlybeusedwhenthetrajectoryisunknown).Thedisadvantageismorecomplexthannaturalcoordinatemethod.SummaryBothofthetwomethodsareneedtosolvesomeproblems
TheEnd
Chapter2FundamentalKinematicsofaRigidBody§2.1Translationalmotionofarigidbody§2.2Rotationofarigidbodyaboutafixedaxis§2.3Velocityandaccelerationofapointin
arigidbodyrotatingaboutafixedaxis
Maincontents1.
DefinitionThedirectionofthelinelinkingarbitrarytwopointsintherigidbodyneverchangesduringitsmotion.2.1Translationalmotionofarigidbody2.
FeaturesDifferentiate:Allparticlesinarigidbodywithtranslationalmotionhavethesametrajectories.Arbitrarytwoparticlesinarigidbodywithtranslationalmotionhavethesamevelocitiesandaccelerationsinthesameinstant.Themotionregularitiesofalltheparticlesinarigidbodywithtranslationalmotionarecompletelysame,sothetranslationofarigidbodycanbesimplifiedtothemotionofaparticleinit.2.1TranslationalmotionofarigidbodyExamplesoftranslationalmotion
2.1Translationalmotionofarigidbody1.
DefinitionTherearetwofixedpointsduringthemovementofarigidbody,itiscalledtherotationaboutafixedaxis.Theaxisisafixedlinethroughthetwofixedpoints.2.2Rotationofarigidbodyaboutafixedaxis2.FeaturesThedistancesbetweeneverypointintherigidbodyandthefixedaxisremainconstants.Everypointintherigidbodywhichisnotonthisaxismovesalongacircularpathinaplaneperpendiculartothisfixedaxis.3.Equationofrotationφ
isanalgebraicquantity.Signdefinitionofφ:followsright-handrule.φ
isthemonotropiccontinuousfunctionoftimet,whentherigidbodyrotates.
2.2Rotationofarigidbodyaboutafixedaxis4.Angularvelocityandangularaccelerationω
isanalgebraicquantitySigndefinitionofω:followsright-handrule.Unit:(1)Angularvelocity:
Inordertodescribethespeedanddirectionoftherotationofarigidbody,theangularvelocityisdefinedas,2.2Rotationofarigidbodyaboutafixedaxis4.Angularvelocityandangularacceleration(2)Angularacceleration:
Inordertodescribethespeedofangularvelocitychangedwithtimeoftherotationofarigidbody,theangularaccelerationisdefinedas,α
isanalgebraicquantitySigndefinitionofα:followsright-handrule.Unit:Arigidbodyhasacceleratedrotationwhenαand
havethesamesigns,deceleratedrotationwhenα
and
haveoppositesigns.
=const,uniformrotation.
α
=const,rotationwithconstantangularacceleration.2.2Rotationofarigidbodyaboutafixedaxis2.3Velocityandaccelerationofapointinarigidbodyrotatingaboutafixedaxis1.Themotionequationdefinedbycurvilinearcoordinate
2.Velocityofapoint
Differentiatetheexpressionabovewithrespecttotimet,gives
∵,
,∴itcanbeobtainedas,Directionofvelocity:alongthetangentline,pointtotherotationdirection.3.AccelerationofapointNormalacceleration:Tangentialacceleration:TheaccelerationofpointM:Thedirectionofacceleration:2.3Velocityandaccelerationofapointinarigidbodyrotatingaboutafixedaxis4.Thedistributionregularitiesofthevelocityandaccelerationintherotatedrigidbody(1)Ateverytime,thevelocityandaccelerationofapointareproportionaltoR.(2)Ateverytime,thedirectionsofthevelocityandaccelerationofapointareperpendiculartoR.Theangle
betweentheaccelerationofanypointanditsradiusisidentical.2.3Velocityandaccelerationofapointinarigidbodyrotatingaboutafixedaxis
TheEnd
Chapter3ComplexMotionofParticle(orPoint)
§3.1Basicconceptofcomplexmotionofparticle
§
3.2Velocitycompositiontheoremofparticle§
3.3Accelerationcompositiontheoremwhenthetransportmotionistranslation§
3.4Accelerationcompositiontheoremwhenthetransportmotionisrotation
Maincontents1.
Whatiscomplexmotionofparticle?Motionisrelative.Amotionrelativetoareferenceobjectcanbecomposedofseveralsimplemotionsrelativetootherreferenceobjects.Themotioniscalled
complexmotion.2.ProblemstosolvebytheoryofcomplexmotionofparticleAcomplexmotioncanbedecomposedintotwosimplemotions.Thevaluesofcomplexmotioncanbecomposedbythoseoftwosimplemotions.Therelationsofthemotionofeverycomponentinthemovingmechanism.Therelationoftwomovingobjectswithoutdirectiveconnection.(1)AmovingpointApointintheresearchingobject.(2)Tworeferencesystems(3)Three
kindsof
motionsApoint,tworeferencesystems,andthreekindsofmotionsFixedreferencesystem:Areferencesystemfixedtotheearthground.Movingreferencesystem:
Areferencesystemfixedtoamovingobjectrelativetotheearthground.Absolutemotion:Motionofthemovingpointrelativetothefixedreferencesystem.Relativemotion:
Motionofthemovingpointrelativetothemovingreferencesystem.Transportmotion:Motionofthemovingreferencesystemrelativetothefixedreferencesystem.
3.1BasicconceptofcomplexmotionofparticleAbsolutemotionRelativemotionTransportmotionBothofabsolutemotionandrelativemotionaremotionsofaparticle.Transportmotionismotionofreferenceobject,actuallymotionofarigidbody.
3.1BasicconceptofcomplexmotionofparticleCorrespondingtoabsolutemotion:AbsolutetrajectoryAbsolute
velocityAbsoluteaccelerationCorrespondingtorelativemotion:
RelativetrajectoryRelativevelocityRelativeaccelerationThereisn’ttrajectoryfortransportmotion,becauseitisn’taparticle,butarigidbody.Correspondingtotransportmotion:TransportvelocityTransportaccelerationTransportvelocity
and
transportacceleration
arethevelocityandaccelerationofthepointinthemovingreferencesystemcoincidingwiththemovingpoint(transportpoint)
relativetothefixedreferencesystematanyinstantoftime.
3.1BasicconceptofcomplexmotionofparticleExample
3-1Crankrockermechanism,thecrankOAisconnectedtothesleevebypinA,andthesleeveissetontherockerO1B.WhenthecrankrotatesaroundtheOaxiswithangularvelocityω,therockerO1BisdriventoswingaroundtheO1axisthroughthesleeve.AnalyzethemotionoftheApoint.
3.1BasicconceptofcomplexmotionofparticleSolution:Movingreferencesystem-O1x'y',fixedtorockingbarO1B.2.Motionanalysis.Movingpoint-pin
A
onthesleeve.y'x'1.Choosethemovingpoint,movingreferencesystemandfixedreferencesystem.Fixedreferencesystem-Fixedtotheground.Absolutemotion-CircularmotionwiththecentreO.Relativemotion-ThestraightlinemotionalongO1B.Transportmotion-RotationofrockingbarabouttheaxisO1.
3.1BasicconceptofcomplexmotionofparticleHowtoselectthemovingpointandmovingsystem1.Themovingsystemcanberegardedasaninfiniterigidbody,andthebasicmotionoftherigidbodyistranslationalandfixed-axisrotation.Therefore,themovingsystemisgenerallytakenasthecoordinatesystemoftranslationalmotionorfixed-axisrotation.2.Themovingpointandthemovingreferencecannotbechosenonthesameobject,otherwisetherelativemotionofthemovingpointwithrespecttothemovingreferencewilldisappear.3.Themovingpointmustalwaysbethesamepointinthesystem,andstudyitsmotionatdifferentmoments.Itisnotallowedtotakeapointatoneinstantandanotherpointasthemovingpointatthenextinstant.1.TheoremAtanyinstantoftime,theabsolutevelocityofamovingpointisequaltothegeometricsumofitsrelativevelocityandtransportvelocity.Thisisthe
velocitycompositiontheoremofpoint.
Theabsolutevelocityofamovingpointcanbedeterminedbythediagonallineoftheparallelogramcomposedbyitstransportvelocityandrelativevelocity.
Thisisthe
parallelogramofvelocity.
3.2Velocitycompositiontheoremofparticle
moveto
2.Provement
3.2VelocitycompositiontheoremofparticleExample
3-2
Thequick-returnmechanismofplanerisshowninthefigure.TheendAofacrankOAisarticulatedwithaslideblock.ThecrankOArotatesaroundthefixedaxisOwiththeuniformangularvelocityω.Theslideblockslidesontherockingbar,whichisdriventoswingaboutthefixedaxisO1.ThelengthofthecrankOA=r,OO1=l.Findtheangularvelocityω1oftherockingbarwhenthecrankmovestothehorizontalposition.
3.2VelocitycompositiontheoremofparticleSolution:Movingreferencesystem-O1x'y',fixedtorockingbarO1B.2.Motionanalysis.Movingpoint-pin
A
onthesleeve.y'x'1.Choosethemovingpoint,movingreferencesystemandfixedreferencesystem.Fixedreferencesystem-Fixedtotheground.Absolutemotion-CircularmotionwiththecentreO.Relativemotion-ThestraightlinemotionalongO1B.Transportmotion-RotationofrockingbarabouttheaxisO1.
3.2Velocitycompositiontheoremofparticle3.VelocityanalysisvavevrAbsolutevelocityva:va=OA·ω
=rω,
Direction:verticaltoOA,plumbedupwardsTransportvelocity
ve:ve
istheunknownquantity,andneedtobesolvedDirection:verticaltoO1BRelativevelocityvr:themagnitudeisunknownDirection:alongtherockingbarO1B
Accordingtothevelocitycompositiontheoremofapoint
3.2Velocitycompositiontheoremofparticle∵∴Supposetheangularvelocityoftherockingbaratthemomentisω1,yieldsSovavevr
3.2Velocitycompositiontheoremofparticle1.Relativeandabsolutederivativeofvector●MOxyzisafixedcoordinatesystem,andO1x1y1z1isamotioncoordinatesystem,theradiusvectorofthemovingpointMinthemotionsystemisWetakethetimederivativeinthefixedsystemtoobtainThisistheabsoluterateofchangeofthevectorr1Takethederivativeofr1withrespecttotimeinthemotionsystemtoobtainThisistherelativerateofchangeofthevectorr13.3Accelerationcompositiontheoremwhenthetransportmotionistranslation2.Threekindsofaccelerations(1)Absoluteacceleration(2)Relativeacceleration3.3Accelerationcompositiontheoremwhenthetransportmotionistranslation●M2.Threekindsofaccelerations(3)Transportacceleration3.3Accelerationcompositiontheoremwhenthetransportmotionistranslation●M3.AccelerationcompositiontheoremWhenthemotionsystemistranslatingmotion,andi1,j1,k1
areconstantvectors,andtheirmagnitudesanddirectionsareconstant,sotheirtimederivativesareallzero,wecangetAccelerationcompositiontheoremwhenthetransportmotionistranslation3.3Accelerationcompositiontheoremwhenthetransportmotionistranslation●MExample
3-3
Aplanemechanismshowninthefigure,thecrankOA=r,rotatesuniformlywithangularvelocityω0.SleeveAcanslidsalongthebarBC.BC=DE,且BD=CE=l.FindtheangularvelocityandangularaccelerationofBDatthemomentshowninthefigure.ABCDEOω0ωαSolution:Choosethemovingpoint,movingreferencesystemandfixedreferencesystemMovingreferencesystem-Cx′y′,fixedtothebar
BC.2.MotionanalysisTransportmotion-translationMovingpoint-slideblock
A.Fixedreferencesystem-
fixedtothebase.ABCDEOω0ωαx'y'Absolutemotion-CircularmotionwithcentreORelativemotion-straightlinemotionalongBCABCDEOω0ωαvBvevavr3.VelocityanalysisyieldsSotheangularvelocityof
BDAbsolute
velocity
va:va=ω0r,verticalto
OA
downwards.
Transportvelocity
ve:ve=
vB,verticalto
BDrightdownwands.
Relativevelocity
vr:magnitudeunknown,along
BCleftEmployingthetheoremofcompositionofvelocities4.AccelerationanalysisAbsoluteacceleration
aa:aa=ωor
,along
OA,pointtoOTransportaccelerationae:tangentialcomponentaet:sametoaBt,magnitude
unknown,verticaltoDB,
supposedownwardsRelativeacceleration
ar:magnitude
unknown,along
BC,
supposetoleftnormalcomponentaen:aen
=aBn=
ω2l
=ωo2r2
/l,alongDB,
pointtoDaaarABCDEOω0ωα
Projecttoaxisy,
yieldsyieldsApplyingthecompositiontheoremofaccelerationsSotheangularaccelerationof
BD:
aaarABCDEOωαyAfixedcoordinatesystemOxyzandmotioncoordinatesystemOx1y1z1,letthemovingpointMmoveinthemotionsystemOx1y1z1,andthemotionsystemOx1y1z1rotatesaboutthez-axisofthefixedsystemwithangularvelocityωandangularaccelerationε●MBasedonthepreviousproofofthevelocitycompositiontheorem,wehave
TherelativevelocityandrelativeaccelerationofthemovingpointM3.4AccelerationcompositiontheoremwhenthetransportmotionisrotationAndthen
Basedonthevelocitycompositiontheorem:AccordingtothePoissonformula:3.4Accelerationcompositiontheoremwhenthetransportmotionisrotation
Coriolisacceleration:Thisistheaccelerationcompositiontheoremwhenthetransportmotionisrotation.3.4AccelerationcompositiontheoremwhenthetransportmotionisrotationExample
3-4Thequick-returnmechanismofplanerisshowninthefigure.TheendAofacrankOAisarticulatedwithaslideblock.ThecrankOArotatesaroundthefixedaxisOwiththeuniformangularvelocityω.Theslideblockslidesontherockingbar,whichisdriventoswingaboutthefixedaxisO1.ThelengthofthecrankOA=r,OO1=l.Findtheangularaccelerationα1oftherockingbarwhenthecrankmovestothehorizontalposition.
Basedonthe
velocityanalysisobtainedfromlastclass,weknowthatSolution:Choosethemovingpoint,movingreferencesystemandfixedreferencesystem.Movingreferencesystem-O1x1y1,fixedtorockingbarO1B.Movingpoint-slideblock
A.vavevry1x1Fixedreferencesystem-Fixedtothe
base2.AccelerationanalysisAbsoluteacceleration
aa:
aa
=ω2r
,along
OA,pointto
O.Relative
acceleration
ar:magnitude
is
unknown
,suppose
it
is
along
O1B
upwards.
Tangential
component
aet:magnitude
is
unknown,
vertical
to
O1B,supposerightdownwardsTransport
acceleration:Normal
component
:
along
O1A,point
to
O1Coriolis
acceleration
aC:verticaltoO1B,showninthefigurex'y'O1Oφωω1ABaaaraCProjectitto
O1x'yieldsTheangularaccelerationofrockingbar:α1Applyingtheaccelerationcompositiontheoremx'y'O1Oφωω1ABaaaraCor
TheEnd
Chapter4
PlanarMotionofaRigidBody§
4.1Basicconceptanddecompositionofrigidbodyplanarmotion
Maincontents§4.2
Velocityofanypointinaplanarmotion§4.3
Accelerationofanypointinaplanarmotion1.Whatisplanarmotionofarigidbody?Thedistancebetweenanypointinarigidbodyandafixedplanealwayskeepsunchangedduringitsmotion.Thismotionofrigidbodyiscalled
planarmotionofarigidbody.4.1Basicconceptanddecompositionofrigidbodyplanarmotion2.SimplificationofaplanarmotionTheplanarmotionofarigidbodycanbesimplifiedtoamotionofaplanegraphintheplaneitselfwithoutconsideringitsthickness.
(a)Connectingrodmotion(b)Simplificationofconnectingrodmotion4.1Basicconceptanddecompositionofrigidbodyplanarmotion3.EquationsofplanarmotionSTodeterminethemotionofaplanegraph,choosethefixedreferencesystemOxy,anarbitrarypointO'intheplanegraphS,anarbitrarylinesegmentO'M.Todeterminetheplanarmotionofarigidbody,onlythepositionofthelinesegmentO'Minthisgraphisneededtobedetermined.EquationsofplanarmotionAplanemotioncanberegardedasthecompositionofa
translation
androtation.4.1Basicconceptanddecompositionofrigidbodyplanarmotion4.Planarmotioncanbedecomposedintotranslationandrotation
Aplanemotionofarigidbodycanbedecomposedintoa
translationwithabasicpointanda
rotation
aboutanaxisthatpassesthroughthebasicpoint.Thevelocityandaccelerationofthe
translation
withabasicpoint
intheplanegraphdependson
theselectionof
thebasicpoint,however,theangularvelocityandaccelerationoftherotationabouttheselectedbasicpoint
doesn’tdependon
thechoiceofthebasicpoint.4.1BasicconceptanddecompositionofrigidbodyplanarmotionAThevelocityofpointAintheplanegraphSis,andtherotationalvelocityoftheplanegraphis.SelectAasthebasicpoint;ThemovingreferencesystemattachedtopointA;Thetransportmotionistranslationwiththebasicpoint
A;Therelativemotionisrotationaboutthebasicpoint
A.(1)Basicpointmethod
·BDeterminethevelocityofpointBintheplanegraph.4.2VelocityofanypointinaplanarmotionABTheorem:Forplanarmotionofarigidbody,thevelocityofanypointinthegraphcanbeobtainedasthevectorsumofthevelocityofthebasicpointandtherelativerotationalvelocitywithrespecttothebasicpoint.4.2Velocityofanypointinaplanarmotion
isverticaltothelinkofABallthetime,sotheprojectionofonABisvanish.Thevelocityprojectiontheorem:thevelocityprojectionsofanytwopointinaplanegraphonthelinelinkingthesetwopointsareidentical.(2)VelocityprojectiontheoremAB4.2Velocityofanypointinaplanarmotiona.Background
Ifapointwhosevelocityiszeroisselectedasthebasicpoint,theprocessoffindingthevelocityofanypointwillbegreatlysimplified.Therefore,itisnaturaltoaskifsuchapointexistsinanyinstant.Ifitdoesexist,howtofindsuchapoint?b.InstantaneouscenterofvelocityAtanyinstant,itmustexistasolepointwhosevelocityiszerointheplanegraphoritsexpandingarea,whichiscalledtheinstantaneousvelocitycenterofthisplanegraphatthisinstant.Foraplanegraph,itsinstantaneousvelocitycenteralwaysexistsuniquely.
(3)Instantaneouscenterofvelocitymethod4.2Velocityofanypointinaplanarmotionc.InstantaneouscenterofvelocitymethodConsideraplanegraph.TheinstantaneousvelocitycenterisP,andtheangularvelocityoftheplanegraphis.SelectinstantaneousvelocitycenterPisabasicpoint,thevelocityofanarbitrarypointAintheplanegraph:4.2Velocityofanypointinaplanarmotiond.MethodstodeterminetheinstantaneousvelocitycenterPA(1)Whenthevelocityofapointandtheangularvelocity
oftheplanegraphareknown,theinstantaneousvelocitycenter(pointP)canbedetermined,
pointPisinthedirectionofthelineformedbyrotatingthethrough90ointhedirectionof
aroundpointA.4.2Velocityofanypointinaplanarmotion(2)Whenaplanegraphrollsalongafixedsurfacewithoutslipping,thecontactpointPbetweenthegraphandthefixedsurfacewillbetheinstantaneousvelocitycenter.
(3)WhenthedirectionsofthevelocitiesattwopointsAandBinagraphareknown,andisnotparallelto,drawlinesfromAandBperpendiculartorespectively,andthecrosspointPofthesetwolineswillbetheinstantaneousvelocitycenter.ABP4.2Velocityofanypointinaplanarmotion(4)WhenthevelocitiesoftwopointsAandBaregivenatanyinstant,and.Therearethreecases:ABP
Whenandpointtothesamedirection,but.DrawtheextensionlineofAB,thelinkinglineoftheendingsofand,thecrosspointofthesetwolineswillbetheinstantaneousvelocitycenter.Therotationdirectionofcanbedetermined,anditsmagnitudeis:◆ω
◆Whenandhaveoppositedirections,drawthelinkinglineoftheendingsofand,andthelineconnectingAB.Thecrosspointofthesetwolineswillbetheinstantaneousvelocitycenter.Therotationdirectionofcanbedetermined,anditsmagnitudeis:
ω4.2VelocityofanypointinaplanarmotionBPAB(5)ThevelocitiesoftwopointsAandBpointtothesamedirectionatanyinstant,,,buttheyarenotperpendiculartolineAB.Inthiscase,theinstantaneousvelocitycenterisindefinitelyfaraway,andtheangularvelocity
=0,i.e.allpointinthefigurehavethesamevelocityatthisinstantoftime.Suchamotioniscalledinstantaneoustranslation,buttheiraccelerationsarenotequal.
When,
theinstantaneousvelocitycenterisindefinitelyfaraway.Theplanegraphhasinstantaneoustranslation,=0,allpointsinthegraphhavethesamevelocityatthisinstantoftime,buttheiraccelerationsarenotequal.◆ω4.2VelocityofanypointinaplanarmotionAABAAttheinstant,theangularvelocityofthegraphis,angularaccelerationis,accelerationofapointAis
.DeterminetheaccelerationofanarbitrarypointBinthegraph.·
4.3
AccelerationofanypointinaplanarmotionBA1.
:
4.3
AccelerationofanypointinaplanarmotionBAB(1)thetangentialacceleration
(2)thenormalacceleration2.
:hastwocomponents:
4.3
AccelerationofanypointinaplanarmotionTheabsoluteaccelerationofpointB:Theorem:
Theaccelerationofanarbitrarypointisequaltothevectorsumofaccelerationofthebasicpoint,thetangentialandnormalaccelerationsoftheplanegraphrotatingaboutthebasicpoint.
4.3
Accelerationofanypointinaplanarmotionω1ⅠⅡO1OABCAnexternaltoothingplanetgearmechanismshowninthefigure.ThelinkingbarO1O=l,rotatesaboutaxisO1withauniformangularvelocityω1.ThebiggergearIIisfixed,theplanetgearIofradiusrrollsalongthegearIIwithoutsliding.AandBaretwopointsontheedgegearI,showninthefigure.Findtheaccelerationsof
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年簡(jiǎn)化版借款合同范本版B版
- 2024美容院連鎖店員工薪酬及福利待遇合同范本3篇
- 個(gè)人消費(fèi)微貸合同范本(2024年版)版
- 福建省南平市塔前中學(xué)高一數(shù)學(xué)理下學(xué)期期末試卷含解析
- 2024月子中心消防設(shè)施節(jié)能改造與優(yōu)化合同3篇
- 多地取還車協(xié)議書(shū)(2篇)
- 個(gè)人房產(chǎn)抵押借款合同范本2024年版版B版
- 生態(tài)文明建設(shè)示范區(qū)創(chuàng)建合作協(xié)議
- 保修合同書(shū)樣本
- 17《望天門山》《望洞庭》說(shuō)課稿-2024-2025學(xué)年三年級(jí)上冊(cè)語(yǔ)文統(tǒng)編版
- 2025年度愛(ài)讀書(shū)學(xué)長(zhǎng)策劃的讀書(shū)講座系列合同2篇
- 廣東省深圳市寶安區(qū)2024-2025學(xué)年八年級(jí)英語(yǔ)上學(xué)期1月期末英語(yǔ)試卷(含答案)
- 《招標(biāo)投標(biāo)法》考試題庫(kù)200題(含答案)
- 《交通運(yùn)輸行業(yè)安全生產(chǎn)監(jiān)督檢查工作指南 第2部分:道路運(yùn)輸》
- 初二生物期末質(zhì)量分析及整改措施
- 公交車站臺(tái)服務(wù)規(guī)范與安全意識(shí)
- 云南省楚雄彝族自治州2024屆高三上學(xué)期期末考試數(shù)學(xué)試題(解析版)
- 駕駛證學(xué)法減分(學(xué)法免分)試題和答案(50題完整版)1650
- 實(shí)驗(yàn)室安全教育課件
- 四川省食品生產(chǎn)企業(yè)食品安全員理論考試題庫(kù)(含答案)
- 《中國(guó)潰瘍性結(jié)腸炎診治指南(2023年)》解讀
評(píng)論
0/150
提交評(píng)論