工程基礎(chǔ)力學(xué) Ⅱ 動(dòng)力學(xué) 課件匯 李晨亮 Chapter 1 Kinematics of a Particle- Chapter 6 Theorem of Momentum_第1頁(yè)
工程基礎(chǔ)力學(xué) Ⅱ 動(dòng)力學(xué) 課件匯 李晨亮 Chapter 1 Kinematics of a Particle- Chapter 6 Theorem of Momentum_第2頁(yè)
工程基礎(chǔ)力學(xué) Ⅱ 動(dòng)力學(xué) 課件匯 李晨亮 Chapter 1 Kinematics of a Particle- Chapter 6 Theorem of Momentum_第3頁(yè)
工程基礎(chǔ)力學(xué) Ⅱ 動(dòng)力學(xué) 課件匯 李晨亮 Chapter 1 Kinematics of a Particle- Chapter 6 Theorem of Momentum_第4頁(yè)
工程基礎(chǔ)力學(xué) Ⅱ 動(dòng)力學(xué) 課件匯 李晨亮 Chapter 1 Kinematics of a Particle- Chapter 6 Theorem of Momentum_第5頁(yè)
已閱讀5頁(yè),還剩151頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Chapter1

KinematicsofaParticle§1.1Motionequationofaparticle§1.2

Velocityandaccelerationofaparticle

Maincontents1.1MotionequationofaparticleThreetypicalmotionequation(1)Motionequationusing

vector(2)Motionequationusingrectangularcoordinate1.1Motionequationofaparticle(3)MotionequationusingnaturalcoordinateThreetypicalmotionequationThecrankofellipticcompassescanrotatearoundfixedaxisO,theendAishingedwithBC;ThepointsBandCcanmovealongtheverticalslidingchutes,respectively.FindthetrajectoryequationofaarbitrarypointMonBC.KnownExample11.1MotionequationofaparticleSolution:Consideranarbitraryposition,thecoordinateofMcanbeexpressedasfollowing:Eliminate

intheaboveequations,thetrajectoryequationofMcanbeobtainedas:

1.1Motionequationofaparticle1.2Velocityandaccelerationofaparticle(1)DefinitionforvelocityandaccelerationofaparticleusingvectorDisplacement:Velocity:Acceleration:(2)Definitionforvelocityandaccelerationofaparticleontherectangularcoordinate(3)

ProjectionforvelocityandaccelerationofaparticleonthenaturalaxesTangentNormalplaneOsculatingplanePrincipalnormalSubnormal(a)Naturalcoordinatesystem1.2Velocityandaccelerationofaparticle(3)

Projectionforvelocityandaccelerationofaparticleonthenaturalaxes(b)Velocityofaparticle(c)AccelerationofaparticleThefirstcomponentrepresentsthechangerateofspeedmagnitudefortheparticle,notedas()TangentialaccelerationThesecondcomponentrepresentsthechangerateofspeeddirectionfortheparticle,notedas()Normalacceleration1.2Velocityandaccelerationofaparticle(3)

Projectionforvelocityandaccelerationofaparticleonthenaturalaxes◆Tangentialacceleration◆NormalaccelerationTangentialacceleration

representsthechangerateofspeedmagnitudetotime,itsalgebraicvalueisequaltothefirstderivativeofthealgebraicvalueofvelocitytotime,orthesecondderivativeofcurvilinearcoordinatetotime,itisalongthetangentoftrajectory.

1.2Velocityandaccelerationofaparticle(1)Thevectormethodisusedtodeduceformula;(2)Therectangularcoordinateandnaturalcoordinatemethodsareusedtocalculate:Theadvantageofnaturalcoordinatemethodistheclearphysicalmeaningandmoresimplethanrectangularcoordinatemethod.Thedisadvantageisthetrajectorymustbeknown,whichlimitstheapplicability.Theadvantageofrectangularcoordinatemethodisthewideapplicability(whichcanonlybeusedwhenthetrajectoryisunknown).Thedisadvantageismorecomplexthannaturalcoordinatemethod.SummaryBothofthetwomethodsareneedtosolvesomeproblems

TheEnd

Chapter2FundamentalKinematicsofaRigidBody§2.1Translationalmotionofarigidbody§2.2Rotationofarigidbodyaboutafixedaxis§2.3Velocityandaccelerationofapointin

arigidbodyrotatingaboutafixedaxis

Maincontents1.

DefinitionThedirectionofthelinelinkingarbitrarytwopointsintherigidbodyneverchangesduringitsmotion.2.1Translationalmotionofarigidbody2.

FeaturesDifferentiate:Allparticlesinarigidbodywithtranslationalmotionhavethesametrajectories.Arbitrarytwoparticlesinarigidbodywithtranslationalmotionhavethesamevelocitiesandaccelerationsinthesameinstant.Themotionregularitiesofalltheparticlesinarigidbodywithtranslationalmotionarecompletelysame,sothetranslationofarigidbodycanbesimplifiedtothemotionofaparticleinit.2.1TranslationalmotionofarigidbodyExamplesoftranslationalmotion

2.1Translationalmotionofarigidbody1.

DefinitionTherearetwofixedpointsduringthemovementofarigidbody,itiscalledtherotationaboutafixedaxis.Theaxisisafixedlinethroughthetwofixedpoints.2.2Rotationofarigidbodyaboutafixedaxis2.FeaturesThedistancesbetweeneverypointintherigidbodyandthefixedaxisremainconstants.Everypointintherigidbodywhichisnotonthisaxismovesalongacircularpathinaplaneperpendiculartothisfixedaxis.3.Equationofrotationφ

isanalgebraicquantity.Signdefinitionofφ:followsright-handrule.φ

isthemonotropiccontinuousfunctionoftimet,whentherigidbodyrotates.

2.2Rotationofarigidbodyaboutafixedaxis4.Angularvelocityandangularaccelerationω

isanalgebraicquantitySigndefinitionofω:followsright-handrule.Unit:(1)Angularvelocity:

Inordertodescribethespeedanddirectionoftherotationofarigidbody,theangularvelocityisdefinedas,2.2Rotationofarigidbodyaboutafixedaxis4.Angularvelocityandangularacceleration(2)Angularacceleration:

Inordertodescribethespeedofangularvelocitychangedwithtimeoftherotationofarigidbody,theangularaccelerationisdefinedas,α

isanalgebraicquantitySigndefinitionofα:followsright-handrule.Unit:Arigidbodyhasacceleratedrotationwhenαand

havethesamesigns,deceleratedrotationwhenα

and

haveoppositesigns.

=const,uniformrotation.

α

=const,rotationwithconstantangularacceleration.2.2Rotationofarigidbodyaboutafixedaxis2.3Velocityandaccelerationofapointinarigidbodyrotatingaboutafixedaxis1.Themotionequationdefinedbycurvilinearcoordinate

2.Velocityofapoint

Differentiatetheexpressionabovewithrespecttotimet,gives

∵,

,∴itcanbeobtainedas,Directionofvelocity:alongthetangentline,pointtotherotationdirection.3.AccelerationofapointNormalacceleration:Tangentialacceleration:TheaccelerationofpointM:Thedirectionofacceleration:2.3Velocityandaccelerationofapointinarigidbodyrotatingaboutafixedaxis4.Thedistributionregularitiesofthevelocityandaccelerationintherotatedrigidbody(1)Ateverytime,thevelocityandaccelerationofapointareproportionaltoR.(2)Ateverytime,thedirectionsofthevelocityandaccelerationofapointareperpendiculartoR.Theangle

betweentheaccelerationofanypointanditsradiusisidentical.2.3Velocityandaccelerationofapointinarigidbodyrotatingaboutafixedaxis

TheEnd

Chapter3ComplexMotionofParticle(orPoint)

§3.1Basicconceptofcomplexmotionofparticle

§

3.2Velocitycompositiontheoremofparticle§

3.3Accelerationcompositiontheoremwhenthetransportmotionistranslation§

3.4Accelerationcompositiontheoremwhenthetransportmotionisrotation

Maincontents1.

Whatiscomplexmotionofparticle?Motionisrelative.Amotionrelativetoareferenceobjectcanbecomposedofseveralsimplemotionsrelativetootherreferenceobjects.Themotioniscalled

complexmotion.2.ProblemstosolvebytheoryofcomplexmotionofparticleAcomplexmotioncanbedecomposedintotwosimplemotions.Thevaluesofcomplexmotioncanbecomposedbythoseoftwosimplemotions.Therelationsofthemotionofeverycomponentinthemovingmechanism.Therelationoftwomovingobjectswithoutdirectiveconnection.(1)AmovingpointApointintheresearchingobject.(2)Tworeferencesystems(3)Three

kindsof

motionsApoint,tworeferencesystems,andthreekindsofmotionsFixedreferencesystem:Areferencesystemfixedtotheearthground.Movingreferencesystem:

Areferencesystemfixedtoamovingobjectrelativetotheearthground.Absolutemotion:Motionofthemovingpointrelativetothefixedreferencesystem.Relativemotion:

Motionofthemovingpointrelativetothemovingreferencesystem.Transportmotion:Motionofthemovingreferencesystemrelativetothefixedreferencesystem.

3.1BasicconceptofcomplexmotionofparticleAbsolutemotionRelativemotionTransportmotionBothofabsolutemotionandrelativemotionaremotionsofaparticle.Transportmotionismotionofreferenceobject,actuallymotionofarigidbody.

3.1BasicconceptofcomplexmotionofparticleCorrespondingtoabsolutemotion:AbsolutetrajectoryAbsolute

velocityAbsoluteaccelerationCorrespondingtorelativemotion:

RelativetrajectoryRelativevelocityRelativeaccelerationThereisn’ttrajectoryfortransportmotion,becauseitisn’taparticle,butarigidbody.Correspondingtotransportmotion:TransportvelocityTransportaccelerationTransportvelocity

and

transportacceleration

arethevelocityandaccelerationofthepointinthemovingreferencesystemcoincidingwiththemovingpoint(transportpoint)

relativetothefixedreferencesystematanyinstantoftime.

3.1BasicconceptofcomplexmotionofparticleExample

3-1Crankrockermechanism,thecrankOAisconnectedtothesleevebypinA,andthesleeveissetontherockerO1B.WhenthecrankrotatesaroundtheOaxiswithangularvelocityω,therockerO1BisdriventoswingaroundtheO1axisthroughthesleeve.AnalyzethemotionoftheApoint.

3.1BasicconceptofcomplexmotionofparticleSolution:Movingreferencesystem-O1x'y',fixedtorockingbarO1B.2.Motionanalysis.Movingpoint-pin

A

onthesleeve.y'x'1.Choosethemovingpoint,movingreferencesystemandfixedreferencesystem.Fixedreferencesystem-Fixedtotheground.Absolutemotion-CircularmotionwiththecentreO.Relativemotion-ThestraightlinemotionalongO1B.Transportmotion-RotationofrockingbarabouttheaxisO1.

3.1BasicconceptofcomplexmotionofparticleHowtoselectthemovingpointandmovingsystem1.Themovingsystemcanberegardedasaninfiniterigidbody,andthebasicmotionoftherigidbodyistranslationalandfixed-axisrotation.Therefore,themovingsystemisgenerallytakenasthecoordinatesystemoftranslationalmotionorfixed-axisrotation.2.Themovingpointandthemovingreferencecannotbechosenonthesameobject,otherwisetherelativemotionofthemovingpointwithrespecttothemovingreferencewilldisappear.3.Themovingpointmustalwaysbethesamepointinthesystem,andstudyitsmotionatdifferentmoments.Itisnotallowedtotakeapointatoneinstantandanotherpointasthemovingpointatthenextinstant.1.TheoremAtanyinstantoftime,theabsolutevelocityofamovingpointisequaltothegeometricsumofitsrelativevelocityandtransportvelocity.Thisisthe

velocitycompositiontheoremofpoint.

Theabsolutevelocityofamovingpointcanbedeterminedbythediagonallineoftheparallelogramcomposedbyitstransportvelocityandrelativevelocity.

Thisisthe

parallelogramofvelocity.

3.2Velocitycompositiontheoremofparticle

moveto

2.Provement

3.2VelocitycompositiontheoremofparticleExample

3-2

Thequick-returnmechanismofplanerisshowninthefigure.TheendAofacrankOAisarticulatedwithaslideblock.ThecrankOArotatesaroundthefixedaxisOwiththeuniformangularvelocityω.Theslideblockslidesontherockingbar,whichisdriventoswingaboutthefixedaxisO1.ThelengthofthecrankOA=r,OO1=l.Findtheangularvelocityω1oftherockingbarwhenthecrankmovestothehorizontalposition.

3.2VelocitycompositiontheoremofparticleSolution:Movingreferencesystem-O1x'y',fixedtorockingbarO1B.2.Motionanalysis.Movingpoint-pin

A

onthesleeve.y'x'1.Choosethemovingpoint,movingreferencesystemandfixedreferencesystem.Fixedreferencesystem-Fixedtotheground.Absolutemotion-CircularmotionwiththecentreO.Relativemotion-ThestraightlinemotionalongO1B.Transportmotion-RotationofrockingbarabouttheaxisO1.

3.2Velocitycompositiontheoremofparticle3.VelocityanalysisvavevrAbsolutevelocityva:va=OA·ω

=rω,

Direction:verticaltoOA,plumbedupwardsTransportvelocity

ve:ve

istheunknownquantity,andneedtobesolvedDirection:verticaltoO1BRelativevelocityvr:themagnitudeisunknownDirection:alongtherockingbarO1B

Accordingtothevelocitycompositiontheoremofapoint

3.2Velocitycompositiontheoremofparticle∵∴Supposetheangularvelocityoftherockingbaratthemomentisω1,yieldsSovavevr

3.2Velocitycompositiontheoremofparticle1.Relativeandabsolutederivativeofvector●MOxyzisafixedcoordinatesystem,andO1x1y1z1isamotioncoordinatesystem,theradiusvectorofthemovingpointMinthemotionsystemisWetakethetimederivativeinthefixedsystemtoobtainThisistheabsoluterateofchangeofthevectorr1Takethederivativeofr1withrespecttotimeinthemotionsystemtoobtainThisistherelativerateofchangeofthevectorr13.3Accelerationcompositiontheoremwhenthetransportmotionistranslation2.Threekindsofaccelerations(1)Absoluteacceleration(2)Relativeacceleration3.3Accelerationcompositiontheoremwhenthetransportmotionistranslation●M2.Threekindsofaccelerations(3)Transportacceleration3.3Accelerationcompositiontheoremwhenthetransportmotionistranslation●M3.AccelerationcompositiontheoremWhenthemotionsystemistranslatingmotion,andi1,j1,k1

areconstantvectors,andtheirmagnitudesanddirectionsareconstant,sotheirtimederivativesareallzero,wecangetAccelerationcompositiontheoremwhenthetransportmotionistranslation3.3Accelerationcompositiontheoremwhenthetransportmotionistranslation●MExample

3-3

Aplanemechanismshowninthefigure,thecrankOA=r,rotatesuniformlywithangularvelocityω0.SleeveAcanslidsalongthebarBC.BC=DE,且BD=CE=l.FindtheangularvelocityandangularaccelerationofBDatthemomentshowninthefigure.ABCDEOω0ωαSolution:Choosethemovingpoint,movingreferencesystemandfixedreferencesystemMovingreferencesystem-Cx′y′,fixedtothebar

BC.2.MotionanalysisTransportmotion-translationMovingpoint-slideblock

A.Fixedreferencesystem-

fixedtothebase.ABCDEOω0ωαx'y'Absolutemotion-CircularmotionwithcentreORelativemotion-straightlinemotionalongBCABCDEOω0ωαvBvevavr3.VelocityanalysisyieldsSotheangularvelocityof

BDAbsolute

velocity

va:va=ω0r,verticalto

OA

downwards.

Transportvelocity

ve:ve=

vB,verticalto

BDrightdownwands.

Relativevelocity

vr:magnitudeunknown,along

BCleftEmployingthetheoremofcompositionofvelocities4.AccelerationanalysisAbsoluteacceleration

aa:aa=ωor

,along

OA,pointtoOTransportaccelerationae:tangentialcomponentaet:sametoaBt,magnitude

unknown,verticaltoDB,

supposedownwardsRelativeacceleration

ar:magnitude

unknown,along

BC,

supposetoleftnormalcomponentaen:aen

=aBn=

ω2l

=ωo2r2

/l,alongDB,

pointtoDaaarABCDEOω0ωα

Projecttoaxisy,

yieldsyieldsApplyingthecompositiontheoremofaccelerationsSotheangularaccelerationof

BD:

aaarABCDEOωαyAfixedcoordinatesystemOxyzandmotioncoordinatesystemOx1y1z1,letthemovingpointMmoveinthemotionsystemOx1y1z1,andthemotionsystemOx1y1z1rotatesaboutthez-axisofthefixedsystemwithangularvelocityωandangularaccelerationε●MBasedonthepreviousproofofthevelocitycompositiontheorem,wehave

TherelativevelocityandrelativeaccelerationofthemovingpointM3.4AccelerationcompositiontheoremwhenthetransportmotionisrotationAndthen

Basedonthevelocitycompositiontheorem:AccordingtothePoissonformula:3.4Accelerationcompositiontheoremwhenthetransportmotionisrotation

Coriolisacceleration:Thisistheaccelerationcompositiontheoremwhenthetransportmotionisrotation.3.4AccelerationcompositiontheoremwhenthetransportmotionisrotationExample

3-4Thequick-returnmechanismofplanerisshowninthefigure.TheendAofacrankOAisarticulatedwithaslideblock.ThecrankOArotatesaroundthefixedaxisOwiththeuniformangularvelocityω.Theslideblockslidesontherockingbar,whichisdriventoswingaboutthefixedaxisO1.ThelengthofthecrankOA=r,OO1=l.Findtheangularaccelerationα1oftherockingbarwhenthecrankmovestothehorizontalposition.

Basedonthe

velocityanalysisobtainedfromlastclass,weknowthatSolution:Choosethemovingpoint,movingreferencesystemandfixedreferencesystem.Movingreferencesystem-O1x1y1,fixedtorockingbarO1B.Movingpoint-slideblock

A.vavevry1x1Fixedreferencesystem-Fixedtothe

base2.AccelerationanalysisAbsoluteacceleration

aa:

aa

=ω2r

,along

OA,pointto

O.Relative

acceleration

ar:magnitude

is

unknown

,suppose

it

is

along

O1B

upwards.

Tangential

component

aet:magnitude

is

unknown,

vertical

to

O1B,supposerightdownwardsTransport

acceleration:Normal

component

along

O1A,point

to

O1Coriolis

acceleration

aC:verticaltoO1B,showninthefigurex'y'O1Oφωω1ABaaaraCProjectitto

O1x'yieldsTheangularaccelerationofrockingbar:α1Applyingtheaccelerationcompositiontheoremx'y'O1Oφωω1ABaaaraCor

TheEnd

Chapter4

PlanarMotionofaRigidBody§

4.1Basicconceptanddecompositionofrigidbodyplanarmotion

Maincontents§4.2

Velocityofanypointinaplanarmotion§4.3

Accelerationofanypointinaplanarmotion1.Whatisplanarmotionofarigidbody?Thedistancebetweenanypointinarigidbodyandafixedplanealwayskeepsunchangedduringitsmotion.Thismotionofrigidbodyiscalled

planarmotionofarigidbody.4.1Basicconceptanddecompositionofrigidbodyplanarmotion2.SimplificationofaplanarmotionTheplanarmotionofarigidbodycanbesimplifiedtoamotionofaplanegraphintheplaneitselfwithoutconsideringitsthickness.

(a)Connectingrodmotion(b)Simplificationofconnectingrodmotion4.1Basicconceptanddecompositionofrigidbodyplanarmotion3.EquationsofplanarmotionSTodeterminethemotionofaplanegraph,choosethefixedreferencesystemOxy,anarbitrarypointO'intheplanegraphS,anarbitrarylinesegmentO'M.Todeterminetheplanarmotionofarigidbody,onlythepositionofthelinesegmentO'Minthisgraphisneededtobedetermined.EquationsofplanarmotionAplanemotioncanberegardedasthecompositionofa

translation

androtation.4.1Basicconceptanddecompositionofrigidbodyplanarmotion4.Planarmotioncanbedecomposedintotranslationandrotation

Aplanemotionofarigidbodycanbedecomposedintoa

translationwithabasicpointanda

rotation

aboutanaxisthatpassesthroughthebasicpoint.Thevelocityandaccelerationofthe

translation

withabasicpoint

intheplanegraphdependson

theselectionof

thebasicpoint,however,theangularvelocityandaccelerationoftherotationabouttheselectedbasicpoint

doesn’tdependon

thechoiceofthebasicpoint.4.1BasicconceptanddecompositionofrigidbodyplanarmotionAThevelocityofpointAintheplanegraphSis,andtherotationalvelocityoftheplanegraphis.SelectAasthebasicpoint;ThemovingreferencesystemattachedtopointA;Thetransportmotionistranslationwiththebasicpoint

A;Therelativemotionisrotationaboutthebasicpoint

A.(1)Basicpointmethod

·BDeterminethevelocityofpointBintheplanegraph.4.2VelocityofanypointinaplanarmotionABTheorem:Forplanarmotionofarigidbody,thevelocityofanypointinthegraphcanbeobtainedasthevectorsumofthevelocityofthebasicpointandtherelativerotationalvelocitywithrespecttothebasicpoint.4.2Velocityofanypointinaplanarmotion

isverticaltothelinkofABallthetime,sotheprojectionofonABisvanish.Thevelocityprojectiontheorem:thevelocityprojectionsofanytwopointinaplanegraphonthelinelinkingthesetwopointsareidentical.(2)VelocityprojectiontheoremAB4.2Velocityofanypointinaplanarmotiona.Background

Ifapointwhosevelocityiszeroisselectedasthebasicpoint,theprocessoffindingthevelocityofanypointwillbegreatlysimplified.Therefore,itisnaturaltoaskifsuchapointexistsinanyinstant.Ifitdoesexist,howtofindsuchapoint?b.InstantaneouscenterofvelocityAtanyinstant,itmustexistasolepointwhosevelocityiszerointheplanegraphoritsexpandingarea,whichiscalledtheinstantaneousvelocitycenterofthisplanegraphatthisinstant.Foraplanegraph,itsinstantaneousvelocitycenteralwaysexistsuniquely.

(3)Instantaneouscenterofvelocitymethod4.2Velocityofanypointinaplanarmotionc.InstantaneouscenterofvelocitymethodConsideraplanegraph.TheinstantaneousvelocitycenterisP,andtheangularvelocityoftheplanegraphis.SelectinstantaneousvelocitycenterPisabasicpoint,thevelocityofanarbitrarypointAintheplanegraph:4.2Velocityofanypointinaplanarmotiond.MethodstodeterminetheinstantaneousvelocitycenterPA(1)Whenthevelocityofapointandtheangularvelocity

oftheplanegraphareknown,theinstantaneousvelocitycenter(pointP)canbedetermined,

pointPisinthedirectionofthelineformedbyrotatingthethrough90ointhedirectionof

aroundpointA.4.2Velocityofanypointinaplanarmotion(2)Whenaplanegraphrollsalongafixedsurfacewithoutslipping,thecontactpointPbetweenthegraphandthefixedsurfacewillbetheinstantaneousvelocitycenter.

(3)WhenthedirectionsofthevelocitiesattwopointsAandBinagraphareknown,andisnotparallelto,drawlinesfromAandBperpendiculartorespectively,andthecrosspointPofthesetwolineswillbetheinstantaneousvelocitycenter.ABP4.2Velocityofanypointinaplanarmotion(4)WhenthevelocitiesoftwopointsAandBaregivenatanyinstant,and.Therearethreecases:ABP

Whenandpointtothesamedirection,but.DrawtheextensionlineofAB,thelinkinglineoftheendingsofand,thecrosspointofthesetwolineswillbetheinstantaneousvelocitycenter.Therotationdirectionofcanbedetermined,anditsmagnitudeis:◆ω

◆Whenandhaveoppositedirections,drawthelinkinglineoftheendingsofand,andthelineconnectingAB.Thecrosspointofthesetwolineswillbetheinstantaneousvelocitycenter.Therotationdirectionofcanbedetermined,anditsmagnitudeis:

ω4.2VelocityofanypointinaplanarmotionBPAB(5)ThevelocitiesoftwopointsAandBpointtothesamedirectionatanyinstant,,,buttheyarenotperpendiculartolineAB.Inthiscase,theinstantaneousvelocitycenterisindefinitelyfaraway,andtheangularvelocity

=0,i.e.allpointinthefigurehavethesamevelocityatthisinstantoftime.Suchamotioniscalledinstantaneoustranslation,buttheiraccelerationsarenotequal.

When,

theinstantaneousvelocitycenterisindefinitelyfaraway.Theplanegraphhasinstantaneoustranslation,=0,allpointsinthegraphhavethesamevelocityatthisinstantoftime,buttheiraccelerationsarenotequal.◆ω4.2VelocityofanypointinaplanarmotionAABAAttheinstant,theangularvelocityofthegraphis,angularaccelerationis,accelerationofapointAis

.DeterminetheaccelerationofanarbitrarypointBinthegraph.·

4.3

AccelerationofanypointinaplanarmotionBA1.

4.3

AccelerationofanypointinaplanarmotionBAB(1)thetangentialacceleration

(2)thenormalacceleration2.

:hastwocomponents:

4.3

AccelerationofanypointinaplanarmotionTheabsoluteaccelerationofpointB:Theorem:

Theaccelerationofanarbitrarypointisequaltothevectorsumofaccelerationofthebasicpoint,thetangentialandnormalaccelerationsoftheplanegraphrotatingaboutthebasicpoint.

4.3

Accelerationofanypointinaplanarmotionω1ⅠⅡO1OABCAnexternaltoothingplanetgearmechanismshowninthefigure.ThelinkingbarO1O=l,rotatesaboutaxisO1withauniformangularvelocityω1.ThebiggergearIIisfixed,theplanetgearIofradiusrrollsalongthegearIIwithoutsliding.AandBaretwopointsontheedgegearI,showninthefigure.Findtheaccelerationsof

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論