版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)雙曲線的右頂點(diǎn)為,右焦點(diǎn)為,過(guò)點(diǎn)作平行的一條漸近線的直線與交于點(diǎn),則的面積為()A. B. C.5 D.62.函數(shù)在的圖像大致為A. B. C. D.3.已知圓錐的高為3,底面半徑為,若該圓錐的頂點(diǎn)與底面的圓周都在同一個(gè)球面上,則這個(gè)球的體積與圓錐的體積的比值為()A. B. C. D.4.若集合,則()A. B.C. D.5.若函數(shù)(其中,圖象的一個(gè)對(duì)稱中心為,,其相鄰一條對(duì)稱軸方程為,該對(duì)稱軸處所對(duì)應(yīng)的函數(shù)值為,為了得到的圖象,則只要將的圖象()A.向右平移個(gè)單位長(zhǎng)度 B.向左平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度6.過(guò)拋物線的焦點(diǎn)的直線交該拋物線于,兩點(diǎn),為坐標(biāo)原點(diǎn).若,則直線的斜率為()A. B. C. D.7.已知,且,則在方向上的投影為()A. B. C. D.8.設(shè),且,則()A. B. C. D.9.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的值為()A.0 B.1 C. D.10.如圖是甲、乙兩位同學(xué)在六次數(shù)學(xué)小測(cè)試(滿分100分)中得分情況的莖葉圖,則下列說(shuō)法錯(cuò)誤的是()A.甲得分的平均數(shù)比乙大 B.甲得分的極差比乙大C.甲得分的方差比乙小 D.甲得分的中位數(shù)和乙相等11.在邊長(zhǎng)為的菱形中,,沿對(duì)角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.12.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-3二、填空題:本題共4小題,每小題5分,共20分。13.正四面體的各個(gè)點(diǎn)在平面同側(cè),各點(diǎn)到平面的距離分別為1,2,3,4,則正四面體的棱長(zhǎng)為__________.14.(5分)已知函數(shù),則不等式的解集為____________.15.春節(jié)期間新型冠狀病毒肺炎疫情在湖北爆發(fā),為了打贏疫情防控阻擊戰(zhàn),我省某醫(yī)院選派2名醫(yī)生,6名護(hù)士到湖北、兩地參加疫情防控工作,每地一名醫(yī)生,3名護(hù)士,其中甲乙兩名護(hù)士不到同一地,共有__________種選派方法.16.在平面直角坐標(biāo)系中,已知圓及點(diǎn),設(shè)點(diǎn)是圓上的動(dòng)點(diǎn),在中,若的角平分線與相交于點(diǎn),則的取值范圍是_______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某動(dòng)漫影視制作公司長(zhǎng)期堅(jiān)持文化自信,不斷挖掘中華優(yōu)秀傳統(tǒng)文化中的動(dòng)漫題材,創(chuàng)作出一批又一批的優(yōu)秀動(dòng)漫影視作品,獲得市場(chǎng)和廣大觀眾的一致好評(píng),同時(shí)也為公司贏得豐厚的利潤(rùn).該公司年至年的年利潤(rùn)關(guān)于年份代號(hào)的統(tǒng)計(jì)數(shù)據(jù)如下表(已知該公司的年利潤(rùn)與年份代號(hào)線性相關(guān)).年份年份代號(hào)年利潤(rùn)(單位:億元)(Ⅰ)求關(guān)于的線性回歸方程,并預(yù)測(cè)該公司年(年份代號(hào)記為)的年利潤(rùn);(Ⅱ)當(dāng)統(tǒng)計(jì)表中某年年利潤(rùn)的實(shí)際值大于由(Ⅰ)中線性回歸方程計(jì)算出該年利潤(rùn)的估計(jì)值時(shí),稱該年為級(jí)利潤(rùn)年,否則稱為級(jí)利潤(rùn)年.將(Ⅰ)中預(yù)測(cè)的該公司年的年利潤(rùn)視作該年利潤(rùn)的實(shí)際值,現(xiàn)從年至年這年中隨機(jī)抽取年,求恰有年為級(jí)利潤(rùn)年的概率.參考公式:,.18.(12分)某中學(xué)準(zhǔn)備組建“文科”興趣特長(zhǎng)社團(tuán),由課外活動(dòng)小組對(duì)高一學(xué)生文科、理科進(jìn)行了問(wèn)卷調(diào)查,問(wèn)卷共100道題,每題1分,總分100分,該課外活動(dòng)小組隨機(jī)抽取了200名學(xué)生的問(wèn)卷成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì),將數(shù)據(jù)按照,,,,分成5組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為“文科方向”學(xué)生,低于60分的稱為“理科方向”學(xué)生.理科方向文科方向總計(jì)男110女50總計(jì)(1)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為是否為“文科方向”與性別有關(guān)?(2)將頻率視為概率,現(xiàn)在從該校高一學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“文科方向”的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、期望和方差.參考公式:,其中.參考臨界值:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82819.(12分)在中,角、、的對(duì)邊分別為、、,且.(1)若,,求的值;(2)若,求的值.20.(12分)已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù).).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,曲線與直線其中的一個(gè)交點(diǎn)為,且點(diǎn)極徑.極角(1)求曲線的極坐標(biāo)方程與點(diǎn)的極坐標(biāo);(2)已知直線的直角坐標(biāo)方程為,直線與曲線相交于點(diǎn)(異于原點(diǎn)),求的面積.21.(12分)2019年12月以來(lái),湖北省武漢市持續(xù)開展流感及相關(guān)疾病監(jiān)測(cè),發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID—19),簡(jiǎn)稱“新冠肺炎”.下圖是2020年1月15日至1月24日累計(jì)確診人數(shù)隨時(shí)間變化的散點(diǎn)圖.為了預(yù)測(cè)在未釆取強(qiáng)力措施下,后期的累計(jì)確診人數(shù),建立了累計(jì)確診人數(shù)y與時(shí)間變量t的兩個(gè)回歸模型,根據(jù)1月15日至1月24日的數(shù)據(jù)(時(shí)間變量t的值依次1,2,…,10)建立模型和.(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)適宜作為累計(jì)確診人數(shù)y與時(shí)間變量t的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)(2根據(jù)(1)的判斷結(jié)果及附表中數(shù)據(jù),建立y關(guān)于x的回歸方程;(3)以下是1月25日至1月29日累計(jì)確診人數(shù)的真實(shí)數(shù)據(jù),根據(jù)(2)的結(jié)果回答下列問(wèn)題:時(shí)間1月25日1月26日1月27日1月28日1月29日累計(jì)確診人數(shù)的真實(shí)數(shù)據(jù)19752744451559747111(ⅰ)當(dāng)1月25日至1月27日這3天的誤差(模型預(yù)測(cè)數(shù)據(jù)與真實(shí)數(shù)據(jù)差值的絕對(duì)值與真實(shí)數(shù)據(jù)的比值)都小于0.1則認(rèn)為模型可靠,請(qǐng)判斷(2)的回歸方程是否可靠?(ⅱ)2020年1月24日在人民政府的強(qiáng)力領(lǐng)導(dǎo)下,全國(guó)人民共同采取了強(qiáng)力的預(yù)防“新冠肺炎”的措施,若采取措施5天后,真實(shí)數(shù)據(jù)明顯低于預(yù)測(cè)數(shù)據(jù),則認(rèn)為防護(hù)措施有效,請(qǐng)判斷預(yù)防措施是否有效?附:對(duì)于一組數(shù)據(jù)(,,……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.參考數(shù)據(jù):其中,.5.53901938576403152515470010015022533850722.(10分)在直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求曲線的普通方程和直線的直角坐標(biāo)方程;(2)若射線的極坐標(biāo)方程為().設(shè)與相交于點(diǎn),與相交于點(diǎn),求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù)雙曲線的標(biāo)準(zhǔn)方程求出右頂點(diǎn)、右焦點(diǎn)的坐標(biāo),再求出過(guò)點(diǎn)與的一條漸近線的平行的直線方程,通過(guò)解方程組求出點(diǎn)的坐標(biāo),最后利用三角形的面積公式進(jìn)行求解即可.【詳解】由雙曲線的標(biāo)準(zhǔn)方程可知中:,因此右頂點(diǎn)的坐標(biāo)為,右焦點(diǎn)的坐標(biāo)為,雙曲線的漸近線方程為:,根據(jù)雙曲線和漸近線的對(duì)稱性不妨設(shè)點(diǎn)作平行的一條漸近線的直線與交于點(diǎn),所以直線的斜率為,因此直線方程為:,因此點(diǎn)的坐標(biāo)是方程組:的解,解得方程組的解為:,即,所以的面積為:.故選:A【點(diǎn)睛】本題考查了雙曲線的漸近線方程的應(yīng)用,考查了兩直線平行的性質(zhì),考查了數(shù)學(xué)運(yùn)算能力.2、B【解析】
由分子、分母的奇偶性,易于確定函數(shù)為奇函數(shù),由的近似值即可得出結(jié)果.【詳解】設(shè),則,所以是奇函數(shù),圖象關(guān)于原點(diǎn)成中心對(duì)稱,排除選項(xiàng)C.又排除選項(xiàng)D;,排除選項(xiàng)A,故選B.【點(diǎn)睛】本題通過(guò)判斷函數(shù)的奇偶性,縮小考察范圍,通過(guò)計(jì)算特殊函數(shù)值,最后做出選擇.本題較易,注重了基礎(chǔ)知識(shí)、基本計(jì)算能力的考查.3、B【解析】
計(jì)算求半徑為,再計(jì)算球體積和圓錐體積,計(jì)算得到答案.【詳解】如圖所示:設(shè)球半徑為,則,解得.故求體積為:,圓錐的體積:,故.故選:.【點(diǎn)睛】本題考查了圓錐,球體積,圓錐的外接球問(wèn)題,意在考查學(xué)生的計(jì)算能力和空間想象能力.4、A【解析】
先確定集合中的元素,然后由交集定義求解.【詳解】,.故選:A.【點(diǎn)睛】本題考查求集合的交集運(yùn)算,掌握交集定義是解題關(guān)鍵.5、B【解析】
由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出,由五點(diǎn)法作圖求出的值,可得的解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,誘導(dǎo)公式,得出結(jié)論.【詳解】根據(jù)已知函數(shù)其中,的圖象過(guò)點(diǎn),,可得,,解得:.再根據(jù)五點(diǎn)法作圖可得,可得:,可得函數(shù)解析式為:故把的圖象向左平移個(gè)單位長(zhǎng)度,可得的圖象,故選B.【點(diǎn)睛】本題主要考查由函數(shù)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出,由五點(diǎn)法作圖求出的值,函數(shù)的圖象變換規(guī)律,誘導(dǎo)公式的應(yīng)用,屬于中檔題.6、D【解析】
根據(jù)拋物線的定義,結(jié)合,求出的坐標(biāo),然后求出的斜率即可.【詳解】解:拋物線的焦點(diǎn),準(zhǔn)線方程為,設(shè),則,故,此時(shí),即.則直線的斜率.故選:D.【點(diǎn)睛】本題考查了拋物線的定義,直線斜率公式,屬于中檔題.7、C【解析】
由向量垂直的向量表示求出,再由投影的定義計(jì)算.【詳解】由可得,因?yàn)?,所以.故在方向上的投影為.故選:C.【點(diǎn)睛】本題考查向量的數(shù)量積與投影.掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵.8、C【解析】
將等式變形后,利用二次根式的性質(zhì)判斷出,即可求出的范圍.【詳解】即故選:C【點(diǎn)睛】此題考查解三角函數(shù)方程,恒等變化后根據(jù)的關(guān)系即可求解,屬于簡(jiǎn)單題目.9、A【解析】
根據(jù)輸入的值大小關(guān)系,代入程序框圖即可求解.【詳解】輸入,,因?yàn)椋杂沙绦蚩驁D知,輸出的值為.故選:A【點(diǎn)睛】本題考查了對(duì)數(shù)式大小比較,條件程序框圖的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.10、B【解析】
由平均數(shù)、方差公式和極差、中位數(shù)概念,可得所求結(jié)論.【詳解】對(duì)于甲,;對(duì)于乙,,故正確;甲的極差為,乙的極差為,故錯(cuò)誤;對(duì)于甲,方差.5,對(duì)于乙,方差,故正確;甲得分的中位數(shù)為,乙得分的中位數(shù)為,故正確.故選:.【點(diǎn)睛】本題考查莖葉圖的應(yīng)用,考查平均數(shù)和方差等概念,培養(yǎng)計(jì)算能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.11、A【解析】
畫圖取的中點(diǎn)M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據(jù),即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點(diǎn)M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A【點(diǎn)睛】此題考查三棱錐的外接球表面積,關(guān)鍵點(diǎn)是通過(guò)幾何關(guān)系求得球心位置和球半徑,方法較多,屬于較易題目.12、D【解析】分析:根據(jù)平面向量的數(shù)量積可得,再結(jié)合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點(diǎn)睛:本題考查了平面向量的數(shù)量積以及投影的應(yīng)用問(wèn)題,也考查了數(shù)形結(jié)合思想的應(yīng)用問(wèn)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
不妨設(shè)點(diǎn)A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個(gè)單位,與正四面體相交,過(guò)點(diǎn)D,與AB,AC分別相交于點(diǎn)E,F(xiàn),根據(jù)題意F為中點(diǎn),E為AB的三等分點(diǎn)(靠近點(diǎn)A),設(shè)棱長(zhǎng)為a,求得,再用余弦定理求得:,從而求得,再根據(jù)頂點(diǎn)A到面EDF的距離為,得到,然后利用等體積法求解,【詳解】不妨設(shè)點(diǎn)A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個(gè)單位,與正四面體相交,過(guò)點(diǎn)D,與AB,AC分別相交于點(diǎn)E,F(xiàn),如圖所示:由題意得:F為中點(diǎn),E為AB的三等分點(diǎn)(靠近點(diǎn)A),設(shè)棱長(zhǎng)為a,,頂點(diǎn)D到面ABC的距離為所以,由余弦定理得:,所以,所以,又頂點(diǎn)A到面EDF的距離為,所以,因?yàn)?,所以,解得,故答案為:【點(diǎn)睛】本題主要考查幾何體的切割問(wèn)題以及等體積法的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和空間想象,運(yùn)算求解的能力,屬于難題,14、【解析】
易知函數(shù)的定義域?yàn)?,且,則是上的偶函數(shù).由于在上單調(diào)遞增,而在上也單調(diào)遞增,由復(fù)合函數(shù)的單調(diào)性知在上單調(diào)遞增,又在上單調(diào)遞增,故知在上單調(diào)遞增.令,知,則不等式可化為,即,可得,又,是偶函數(shù),可得,由在上單調(diào)遞增,可得,則,解得,故不等式的解集為.15、24【解析】
先求出每地一名醫(yī)生,3名護(hù)士的選派方法的種數(shù),再減去甲乙兩名護(hù)士到同一地的種數(shù)即可.【詳解】解:每地一名醫(yī)生,3名護(hù)士的選派方法的種數(shù)有,若甲乙兩名護(hù)士到同一地的種數(shù)有,則甲乙兩名護(hù)士不到同一地的種數(shù)有.故答案為:.【點(diǎn)睛】本題考查利用間接法求排列組合問(wèn)題,正難則反,是基礎(chǔ)題.16、【解析】
由角平分線成比例定理推理可得,進(jìn)而設(shè)點(diǎn)表示向量構(gòu)建方程組表示點(diǎn)P坐標(biāo),代入圓C方程即可表示動(dòng)點(diǎn)Q的軌跡方程,再由將所求視為該圓上的點(diǎn)與原點(diǎn)間的距離,所以其最值為圓心到原點(diǎn)的距離加減半徑.【詳解】由題可構(gòu)建如圖所示的圖形,因?yàn)锳Q是的角平分線,由角平分線成比例定理可知,所以.設(shè)點(diǎn),點(diǎn),即,則,所以.又因?yàn)辄c(diǎn)是圓上的動(dòng)點(diǎn),則,故點(diǎn)Q的運(yùn)功軌跡是以為圓心為半徑的圓,又即為該圓上的點(diǎn)與原點(diǎn)間的距離,因?yàn)椋怨蚀鸢笧椋骸军c(diǎn)睛】本題考查與圓有關(guān)的距離的最值問(wèn)題,常常轉(zhuǎn)化到圓心的距離加減半徑,還考查了求動(dòng)點(diǎn)的軌跡方程,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ),該公司年年利潤(rùn)的預(yù)測(cè)值為億元;(Ⅱ).【解析】
(Ⅰ)求出和的值,將表格中的數(shù)據(jù)代入最小二乘法公式,求得和的值,進(jìn)而可求得關(guān)于的線性回歸方程,然后將代入回歸直線方程,可得出該公司年年利潤(rùn)的估計(jì)值;(Ⅱ)利用(Ⅰ)中的回歸直線方程計(jì)算出從年至年這年被評(píng)為級(jí)利潤(rùn)年的年數(shù),然后利用組合計(jì)數(shù)原理結(jié)合古典概型的概率可得出所求事件的概率.【詳解】(Ⅰ)根據(jù)表中數(shù)據(jù),計(jì)算可得,,,又,,,關(guān)于的線性回歸方程為.將代入回歸方程得(億元),該公司年的年利潤(rùn)的預(yù)測(cè)值為億元.(Ⅱ)由(Ⅰ)可知年至年的年利潤(rùn)的估計(jì)值分別為、、、、、、、(單位:億元),其中實(shí)際利潤(rùn)大于相應(yīng)估計(jì)值的有年.故這年中被評(píng)為級(jí)利潤(rùn)年的有年,評(píng)為級(jí)利潤(rùn)年的有年.記“從年至年這年的年利潤(rùn)中隨機(jī)抽取年,恰有年為級(jí)利潤(rùn)年”的概率為,.【點(diǎn)睛】本題考查利用最小二乘法求回歸直線方程,同時(shí)也考查了古典概型概率的計(jì)算,涉及組合計(jì)數(shù)原理的應(yīng)用,考查計(jì)算能力,屬于中等題.18、(1)列聯(lián)表見解析,有;(2)分布列見解析,,.【解析】
(1)由頻率分布直方圖可得分?jǐn)?shù)在、之間的學(xué)生人數(shù),可得列聯(lián)表.根據(jù)列聯(lián)表計(jì)算的值,結(jié)合參考臨界值表可得到結(jié)論;(2)從該校高一學(xué)生中隨機(jī)抽取1人,求出該人為“文科方向”的概率.由題意,求出分布列,根據(jù)公式求出期望和方差.【詳解】(1)由頻率分布直方圖可得分?jǐn)?shù)在之間的學(xué)生人數(shù)為,在之間的學(xué)生人數(shù)為,所以低于60分的學(xué)生人數(shù)為120.因此列聯(lián)表為理科方向文科方向總計(jì)男8030110女405090總計(jì)12080200又,所以有99%的把握認(rèn)為是否為“文科方向”與性別有關(guān).(2)易知從該校高一學(xué)生中隨機(jī)抽取1人,則該人為“文科方向”的概率為.依題意知,所以(),所以的分布列為0123P所以期望,方差.【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn),考查離散型隨機(jī)變量的分布列、期望和方差,屬于中檔題.19、(1);(2).【解析】
(1)利用余弦定理得出關(guān)于的二次方程,結(jié)合,可求出的值;(2)利用兩角和的余弦公式以及誘導(dǎo)公式可求出的值,利用同角三角函數(shù)的基本關(guān)系求出的值,然后利用二倍角的正切公式可求出的值.【詳解】(1)在中,由余弦定理得,,即,解得或(舍),所以;(2)由及得,,所以,又因?yàn)椋?,從而,所?【點(diǎn)睛】本題考查利用余弦定理解三角形,同時(shí)也考查了兩角和的余弦公式、同角三角函數(shù)的基本關(guān)系以及二倍角公式求值,考查計(jì)算能力,屬于中等題.20、(1)極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為(2)【解析】
(1)利用極坐標(biāo)方程、普通方程、參數(shù)方程間的互化公式即可;(2)只需算出A
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年公共設(shè)施窗簾清洗消毒服務(wù)合同范本3篇
- 2024版汽車檢測(cè)臺(tái)租賃合同
- 2024石材外墻干掛勞務(wù)服務(wù)合同標(biāo)準(zhǔn)版6篇
- 2025年度特色飲品店門面房租賃及新品研發(fā)合同3篇
- 2025年度圓形冷卻塔能源管理服務(wù)合同4篇
- 2024版基礎(chǔ)建設(shè)融資借款協(xié)議模板版
- 2025年度水電工程質(zhì)保期服務(wù)合同4篇
- 2025年度學(xué)校圖書館窗簾升級(jí)改造合同4篇
- 2025年度生態(tài)修復(fù)工程承包樹木合同協(xié)議書4篇
- 2024石材行業(yè)品牌推廣與營(yíng)銷合同3篇
- 領(lǐng)導(dǎo)溝通的藝術(shù)
- 發(fā)生用藥錯(cuò)誤應(yīng)急預(yù)案
- 南潯至臨安公路(南潯至練市段)公路工程環(huán)境影響報(bào)告
- 綠色貸款培訓(xùn)課件
- 大學(xué)生預(yù)征對(duì)象登記表(樣表)
- 主管部門審核意見三篇
- 初中數(shù)學(xué)校本教材(完整版)
- 父母教育方式對(duì)幼兒社會(huì)性發(fā)展影響的研究
- 新課標(biāo)人教版數(shù)學(xué)三年級(jí)上冊(cè)第八單元《分?jǐn)?shù)的初步認(rèn)識(shí)》教材解讀
- (人教版2019)數(shù)學(xué)必修第一冊(cè) 第三章 函數(shù)的概念與性質(zhì) 復(fù)習(xí)課件
- 重慶市銅梁區(qū)2024屆數(shù)學(xué)八上期末檢測(cè)試題含解析
評(píng)論
0/150
提交評(píng)論