江蘇省蘇州市實(shí)驗(yàn)中學(xué)2022年數(shù)學(xué)高三上期末統(tǒng)考試題含解析_第1頁(yè)
江蘇省蘇州市實(shí)驗(yàn)中學(xué)2022年數(shù)學(xué)高三上期末統(tǒng)考試題含解析_第2頁(yè)
江蘇省蘇州市實(shí)驗(yàn)中學(xué)2022年數(shù)學(xué)高三上期末統(tǒng)考試題含解析_第3頁(yè)
江蘇省蘇州市實(shí)驗(yàn)中學(xué)2022年數(shù)學(xué)高三上期末統(tǒng)考試題含解析_第4頁(yè)
江蘇省蘇州市實(shí)驗(yàn)中學(xué)2022年數(shù)學(xué)高三上期末統(tǒng)考試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線(xiàn)內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知三點(diǎn)A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點(diǎn)的距離為()A. B.C. D.2.若,,,則下列結(jié)論正確的是()A. B. C. D.3.“”是“函數(shù)(為常數(shù))為冪函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件4.設(shè)等差數(shù)列的前項(xiàng)和為,若,則()A.10 B.9 C.8 D.75.已知集合,,則等于()A. B. C. D.6.已知三棱柱的所有棱長(zhǎng)均相等,側(cè)棱平面,過(guò)作平面與平行,設(shè)平面與平面的交線(xiàn)為,記直線(xiàn)與直線(xiàn)所成銳角分別為,則這三個(gè)角的大小關(guān)系為()A. B.C. D.7.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為3,則可輸入的實(shí)數(shù)值的個(gè)數(shù)為()A.1 B.2 C.3 D.48.某個(gè)小區(qū)住戶(hù)共200戶(hù),為調(diào)查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶(hù)進(jìn)行調(diào)查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內(nèi)用水量超過(guò)15m3的住戶(hù)的戶(hù)數(shù)為()A.10 B.50 C.60 D.1409.過(guò)雙曲線(xiàn)的右焦點(diǎn)F作雙曲線(xiàn)C的一條弦AB,且,若以AB為直徑的圓經(jīng)過(guò)雙曲線(xiàn)C的左頂點(diǎn),則雙曲線(xiàn)C的離心率為()A. B. C.2 D.10.已知函數(shù)為奇函數(shù),則()A. B.1 C.2 D.311.元代數(shù)學(xué)家朱世杰的數(shù)學(xué)名著《算術(shù)啟蒙》是中國(guó)古代代數(shù)學(xué)的通論,其中關(guān)于“松竹并生”的問(wèn)題:松長(zhǎng)五尺,竹長(zhǎng)兩尺,松日自半,竹日自倍,松竹何日而長(zhǎng)等.下圖是源于其思想的一個(gè)程序圖,若,,則輸出的()A.3 B.4 C.5 D.612.已知,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.《九章算術(shù)》是中國(guó)古代的數(shù)學(xué)名著,其中《方田》一章給出了弧田面積的計(jì)算公式.如圖所示,弧田是由圓弧AB和其所對(duì)弦AB圍成的圖形,若弧田的弧AB長(zhǎng)為4π,弧所在的圓的半徑為6,則弧田的弦AB長(zhǎng)是__________,弧田的面積是__________.14.若變量x,y滿(mǎn)足:,且滿(mǎn)足,則參數(shù)t的取值范圍為_(kāi)______.15.已知等差數(shù)列的前n項(xiàng)和為Sn,若,則____.16.展開(kāi)式中,含項(xiàng)的系數(shù)為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)(為實(shí)常數(shù)).(1)討論函數(shù)在上的單調(diào)性;(2)若存在,使得成立,求實(shí)數(shù)的取值范圍.18.(12分)設(shè)函數(shù),.(1)解不等式;(2)若對(duì)任意的實(shí)數(shù)恒成立,求的取值范圍.19.(12分)某貧困地區(qū)幾個(gè)丘陵的外圍有兩條相互垂直的直線(xiàn)型公路,以及鐵路線(xiàn)上的一條應(yīng)開(kāi)鑿的直線(xiàn)穿山隧道,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計(jì)劃修建一條連接兩條公路和山區(qū)邊界的直線(xiàn)型公路,以所在的直線(xiàn)分別為軸,軸,建立平面直角坐標(biāo)系,如圖所示,山區(qū)邊界曲線(xiàn)為,設(shè)公路與曲線(xiàn)相切于點(diǎn),的橫坐標(biāo)為.(1)當(dāng)為何值時(shí),公路的長(zhǎng)度最短?求出最短長(zhǎng)度;(2)當(dāng)公路的長(zhǎng)度最短時(shí),設(shè)公路交軸,軸分別為,兩點(diǎn),并測(cè)得四邊形中,,,千米,千米,求應(yīng)開(kāi)鑿的隧道的長(zhǎng)度.20.(12分)在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.(1)把的參數(shù)方程化為極坐標(biāo)方程:(2)求與交點(diǎn)的極坐標(biāo).21.(12分)已知拋物線(xiàn)的焦點(diǎn)也是橢圓的一個(gè)焦點(diǎn),與的公共弦的長(zhǎng)為.(1)求的方程;(2)過(guò)點(diǎn)的直線(xiàn)與相交于、兩點(diǎn),與相交于、兩點(diǎn),且與同向,設(shè)在點(diǎn)處的切線(xiàn)與軸的交點(diǎn)為,證明:直線(xiàn)繞點(diǎn)旋轉(zhuǎn)時(shí),總是鈍角三角形;(3)為上的動(dòng)點(diǎn),、為長(zhǎng)軸的兩個(gè)端點(diǎn),過(guò)點(diǎn)作的平行線(xiàn)交橢圓于點(diǎn),過(guò)點(diǎn)作的平行線(xiàn)交橢圓于點(diǎn),請(qǐng)問(wèn)的面積是否為定值,并說(shuō)明理由.22.(10分)若關(guān)于的方程的兩根都大于2,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

選B.考點(diǎn):圓心坐標(biāo)2、D【解析】

根據(jù)指數(shù)函數(shù)的性質(zhì),取得的取值范圍,即可求解,得到答案.【詳解】由指數(shù)函數(shù)的性質(zhì),可得,即,又由,所以.故選:D.【點(diǎn)睛】本題主要考查了指數(shù)冪的比較大小,其中解答中熟記指數(shù)函數(shù)的性質(zhì),求得的取值范圍是解答的關(guān)鍵,著重考查了計(jì)算能力,屬于基礎(chǔ)題.3、A【解析】

根據(jù)冪函數(shù)定義,求得的值,結(jié)合充分條件與必要條件的概念即可判斷.【詳解】∵當(dāng)函數(shù)為冪函數(shù)時(shí),,解得或,∴“”是“函數(shù)為冪函數(shù)”的充分不必要條件.故選:A.【點(diǎn)睛】本題考查了充分必要條件的概念和判斷,冪函數(shù)定義的應(yīng)用,屬于基礎(chǔ)題.4、B【解析】

根據(jù)題意,解得,,得到答案.【詳解】,解得,,故.故選:.【點(diǎn)睛】本題考查了等差數(shù)列的求和,意在考查學(xué)生的計(jì)算能力.5、A【解析】

進(jìn)行交集的運(yùn)算即可.【詳解】,1,2,,,,1,.故選:.【點(diǎn)睛】本題主要考查了列舉法、描述法的定義,考查了交集的定義及運(yùn)算,考查了計(jì)算能力,屬于基礎(chǔ)題.6、B【解析】

利用圖形作出空間中兩直線(xiàn)所成的角,然后利用余弦定理求解即可.【詳解】如圖,,設(shè)為的中點(diǎn),為的中點(diǎn),由圖可知過(guò)且與平行的平面為平面,所以直線(xiàn)即為直線(xiàn),由題易知,的補(bǔ)角,分別為,設(shè)三棱柱的棱長(zhǎng)為2,在中,,;在中,,;在中,,,.故選:B【點(diǎn)睛】本題主要考查了空間中兩直線(xiàn)所成角的計(jì)算,考查了學(xué)生的作圖,用圖能力,體現(xiàn)了學(xué)生直觀(guān)想象的核心素養(yǎng).7、C【解析】試題分析:根據(jù)題意,當(dāng)時(shí),令,得;當(dāng)時(shí),令,得,故輸入的實(shí)數(shù)值的個(gè)數(shù)為1.考點(diǎn):程序框圖.8、C【解析】從頻率分布直方圖可知,用水量超過(guò)15m3的住戶(hù)的頻率為,即分層抽樣的50戶(hù)中有0.3×50=15戶(hù)住戶(hù)的用水量超過(guò)15立方米所以小區(qū)內(nèi)用水量超過(guò)15立方米的住戶(hù)戶(hù)數(shù)為,故選C9、C【解析】

由得F是弦AB的中點(diǎn).進(jìn)而得AB垂直于x軸,得,再結(jié)合關(guān)系求解即可【詳解】因?yàn)?,所以F是弦AB的中點(diǎn).且AB垂直于x軸.因?yàn)橐訟B為直徑的圓經(jīng)過(guò)雙曲線(xiàn)C的左頂點(diǎn),所以,即,則,故.故選:C【點(diǎn)睛】本題是對(duì)雙曲線(xiàn)的漸近線(xiàn)以及離心率的綜合考查,是考查基本知識(shí),屬于基礎(chǔ)題.10、B【解析】

根據(jù)整體的奇偶性和部分的奇偶性,判斷出的值.【詳解】依題意是奇函數(shù).而為奇函數(shù),為偶函數(shù),所以為偶函數(shù),故,也即,化簡(jiǎn)得,所以.故選:B【點(diǎn)睛】本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù)值,屬于基礎(chǔ)題.11、B【解析】分析:根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個(gè)等比數(shù)列,公比為;根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個(gè)等比數(shù)列,公比為,根據(jù)每次循環(huán)得到的的值的大小決定循環(huán)的次數(shù)即可.詳解:記執(zhí)行第次循環(huán)時(shí),的值記為有,則有;記執(zhí)行第次循環(huán)時(shí),的值記為有,則有.令,則有,故,故選B.點(diǎn)睛:本題為算法中的循環(huán)結(jié)構(gòu)和數(shù)列通項(xiàng)的綜合,屬于中檔題,解題時(shí)注意流程圖中蘊(yùn)含的數(shù)列關(guān)系(比如相鄰項(xiàng)滿(mǎn)足等比數(shù)列、等差數(shù)列的定義,是否是求數(shù)列的前和、前項(xiàng)積等).12、D【解析】

分別解出集合然后求并集.【詳解】解:,故選:D【點(diǎn)睛】考查集合的并集運(yùn)算,基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、612π﹣9【解析】

過(guò)作,交于,先求得圓心角的弧度數(shù),然后解解三角形求得的長(zhǎng).利用扇形面積減去三角形的面積,求得弧田的面積.【詳解】∵如圖,弧田的弧AB長(zhǎng)為4π,弧所在的圓的半徑為6,過(guò)作,交于,根據(jù)圓的幾何性質(zhì)可知,垂直平分.∴α=∠AOB==,可得∠AOD=,OA=6,∴AB=2AD=2OAsin=2×=6,∴弧田的面積S=S扇形OAB﹣S△OAB=4π×6﹣=12π﹣9.故答案為:6,12π﹣9.【點(diǎn)睛】本小題主要考查弓形弦長(zhǎng)和弓形面積的計(jì)算,考查中國(guó)古代數(shù)學(xué)文化,屬于中檔題.14、【解析】

根據(jù)變量x,y滿(mǎn)足:,畫(huà)出可行域,由,解得直線(xiàn)過(guò)定點(diǎn),直線(xiàn)繞定點(diǎn)旋轉(zhuǎn)與可行域有交點(diǎn)即可,再結(jié)合圖象利用斜率求解.【詳解】由變量x,y滿(mǎn)足:,畫(huà)出可行域如圖所示陰影部分,由,整理得,由,解得,所以直線(xiàn)過(guò)定點(diǎn),由,解得,由,解得,要使,則與可行域有交點(diǎn),當(dāng)時(shí),滿(mǎn)足條件,當(dāng)時(shí),直線(xiàn)得斜率應(yīng)該不小于A(yíng)C,而不大于A(yíng)B,即或,解得,且,綜上:參數(shù)t的取值范圍為.故答案為:【點(diǎn)睛】本題主要考查線(xiàn)性規(guī)劃的應(yīng)用,還考查了轉(zhuǎn)化運(yùn)算求解的能力,屬于中檔題.15、【解析】

由,,成等差數(shù)列,代入可得的值.【詳解】解:由等差數(shù)列的性質(zhì)可得:,,成等差數(shù)列,可得:,代入,可得:,故答案為:.【點(diǎn)睛】本題主要考查等差數(shù)列前n項(xiàng)和的性質(zhì),相對(duì)不難.16、2【解析】

變換得到,展開(kāi)式的通項(xiàng)為,計(jì)算得到答案.【詳解】,的展開(kāi)式的通項(xiàng)為:.含項(xiàng)的系數(shù)為:.故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)【解析】

(1)分類(lèi)討論的值,利用導(dǎo)數(shù)證明單調(diào)性即可;(2)利用導(dǎo)數(shù)分別得出,,時(shí),的最小值,即可得出實(shí)數(shù)的取值范圍.【詳解】(1),.當(dāng)即時(shí),,,此時(shí),在上單調(diào)遞增;當(dāng)即時(shí),時(shí),,在上單調(diào)遞減;時(shí),,在上單調(diào)遞增;當(dāng)即時(shí),,,此時(shí),在上單調(diào)遞減;(2)當(dāng)時(shí),因?yàn)樵谏蠁握{(diào)遞增,所以的最小值為,所以當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增所以的最小值為.因?yàn)?,所以?所以,所以.當(dāng)時(shí),在上單調(diào)遞減所以的最小值為因?yàn)?,所以,所以,綜上,.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性以及利用導(dǎo)數(shù)研究函數(shù)的存在性問(wèn)題,屬于中檔題.18、(1);(2)【解析】試題分析:(1)將絕對(duì)值不等式兩邊平方,化為二次不等式求解.(2)將問(wèn)題化為分段函數(shù)問(wèn)題,通過(guò)分類(lèi)討論并根據(jù)恒成立問(wèn)題的解法求解即可.試題解析:整理得解得①②解得③,且無(wú)限趨近于4,綜上的取值范圍是19、(1)當(dāng)時(shí),公路的長(zhǎng)度最短為千米;(2)(千米).【解析】

(1)設(shè)切點(diǎn)的坐標(biāo)為,利用導(dǎo)數(shù)的幾何意義求出切線(xiàn)的方程為,根據(jù)兩點(diǎn)間距離得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出單調(diào)性,從而得出極值和最值,即可得出結(jié)果;(2)在中,由余弦定理得出,利用正弦定理,求出,最后根據(jù)勾股定理即可求出的長(zhǎng)度.【詳解】(1)由題可知,設(shè)點(diǎn)的坐標(biāo)為,又,則直線(xiàn)的方程為,由此得直線(xiàn)與坐標(biāo)軸交點(diǎn)為:,則,故,設(shè),則.令,解得=10.當(dāng)時(shí),是減函數(shù);當(dāng)時(shí),是增函數(shù).所以當(dāng)時(shí),函數(shù)有極小值,也是最小值,所以,此時(shí).故當(dāng)時(shí),公路的長(zhǎng)度最短,最短長(zhǎng)度為千米.(2)在中,,,所以,所以,根據(jù)正弦定理,,,,又,所以.在中,,,由勾股定理可得,即,解得,(千米).【點(diǎn)睛】本題考查利用導(dǎo)數(shù)解決實(shí)際的最值問(wèn)題,涉及構(gòu)造函數(shù)法以及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性和極值,還考查正余弦定理的實(shí)際應(yīng)用,還考查解題分析能力和計(jì)算能力.20、(1)(2)與交點(diǎn)的極坐標(biāo)為,和【解析】

(1)先把曲線(xiàn)化成直角坐標(biāo)方程,再化簡(jiǎn)成極坐標(biāo)方程;(2)聯(lián)立曲線(xiàn)和曲線(xiàn)的方程解得即可.【詳解】(1)曲線(xiàn)的直角坐標(biāo)方程為:,即.的參數(shù)方程化為極坐標(biāo)方程為;(2)聯(lián)立可得:,與交點(diǎn)的極坐標(biāo)為,和.【點(diǎn)睛】本題考查了參數(shù)方程,直角坐標(biāo)方程,極坐標(biāo)方程的互化,也考查了極坐標(biāo)方程的聯(lián)立,屬于基礎(chǔ)題.21、(1);(2)證明見(jiàn)解析;(3)是,理由見(jiàn)解析.【解析】

(1)根據(jù)兩個(gè)曲線(xiàn)的焦點(diǎn)相同,得到,再根據(jù)與的公共弦長(zhǎng)為得出,可求出和的值,進(jìn)而可得出曲線(xiàn)的方程;(2)設(shè)點(diǎn),根據(jù)導(dǎo)數(shù)的幾何意義得到曲線(xiàn)在點(diǎn)處的切線(xiàn)方程,求出點(diǎn)的坐標(biāo),利用向量的數(shù)量積得出,則問(wèn)題得以證明;(3)設(shè)直線(xiàn),直線(xiàn),、、,推導(dǎo)出以及,求出和,通過(guò)化簡(jiǎn)計(jì)算可得出為定值,進(jìn)而可得出結(jié)論.【詳解】(1)由知其焦點(diǎn)的坐標(biāo)為,也是橢圓的一個(gè)焦點(diǎn),,①又與的公共弦的長(zhǎng)為,與都關(guān)于軸對(duì)稱(chēng),且的方程為,由此易知與的公共點(diǎn)的坐標(biāo)為,,②聯(lián)立①②,得,,故的方程為;(2)如圖,,由得,在點(diǎn)處的切線(xiàn)方程為,即,令,得,即,,而,于是,因此是銳角,從而是鈍角.故直

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論