河南省鶴壁市??h二中2022-2023學(xué)年數(shù)學(xué)高三上期末調(diào)研模擬試題含解析_第1頁
河南省鶴壁市??h二中2022-2023學(xué)年數(shù)學(xué)高三上期末調(diào)研模擬試題含解析_第2頁
河南省鶴壁市??h二中2022-2023學(xué)年數(shù)學(xué)高三上期末調(diào)研模擬試題含解析_第3頁
河南省鶴壁市??h二中2022-2023學(xué)年數(shù)學(xué)高三上期末調(diào)研模擬試題含解析_第4頁
河南省鶴壁市浚縣二中2022-2023學(xué)年數(shù)學(xué)高三上期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.22.為計(jì)算,設(shè)計(jì)了如圖所示的程序框圖,則空白框中應(yīng)填入()A. B. C. D.3.若集合,則=()A. B. C. D.4.如圖在一個(gè)的二面角的棱有兩個(gè)點(diǎn),線段分別在這個(gè)二面角的兩個(gè)半平面內(nèi),且都垂直于棱,且,則的長(zhǎng)為()A.4 B. C.2 D.5.《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹男w,下底面寬3丈,長(zhǎng)4丈,上棱長(zhǎng)2丈,高2丈,問:它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長(zhǎng)為1,則該楔體的體積為()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺6.?dāng)?shù)列的通項(xiàng)公式為.則“”是“為遞增數(shù)列”的()條件.A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要7.已知直線:過雙曲線的一個(gè)焦點(diǎn)且與其中一條漸近線平行,則雙曲線的方程為()A. B. C. D.8.已知函數(shù),若,則的值等于()A. B. C. D.9.一個(gè)幾何體的三視圖如圖所示,其中正視圖是一個(gè)正三角形,則這個(gè)幾何體的體積為()A. B. C. D.10.函數(shù)的定義域?yàn)椋ǎ〢.或 B.或C. D.11.復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.若復(fù)數(shù)()在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)在直線上,則等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐中,,,,且二面角的大小為,則三棱錐外接球的表面積為__________.14.命題“對(duì)任意,”的否定是.15.已知橢圓的下頂點(diǎn)為,若直線與橢圓交于不同的兩點(diǎn)、,則當(dāng)_____時(shí),外心的橫坐標(biāo)最大.16.若,則=____,=___.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面是邊長(zhǎng)為的菱形,,點(diǎn)分別是的中點(diǎn).(1)求證:平面;(2)若,求直線與平面所成角的正弦值.18.(12分)在直角坐標(biāo)系中,已知直線的直角坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線和直線的極坐標(biāo)方程;(2)已知直線與曲線、相交于異于極點(diǎn)的點(diǎn),若的極徑分別為,求的值.19.(12分)已知等差數(shù)列{an}的各項(xiàng)均為正數(shù),Sn為等差數(shù)列{an}的前n項(xiàng)和,.(1)求數(shù)列{an}的通項(xiàng)an;(2)設(shè)bn=an?3n,求數(shù)列{bn}的前n項(xiàng)和Tn.20.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程和曲線的直角坐標(biāo)方程;(2)若點(diǎn)是直線的一點(diǎn),過點(diǎn)作曲線的切線,切點(diǎn)為,求的最小值.21.(12分)如圖所示,四棱柱中,底面為梯形,,,,,,.(1)求證:;(2)若平面平面,求二面角的余弦值.22.(10分)在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F(xiàn),G分別是棱AA1,AC和A1C1的中點(diǎn),以為正交基底,建立如圖所示的空間直角坐標(biāo)系F-xyz.(1)求異面直線AC與BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點(diǎn),再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時(shí),有最大值為,即,故..當(dāng),即時(shí)等號(hào)成立.故選:.【點(diǎn)睛】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.2、A【解析】

根據(jù)程序框圖輸出的S的值即可得到空白框中應(yīng)填入的內(nèi)容.【詳解】由程序框圖的運(yùn)行,可得:S=0,i=0滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=1,S=1,i=1滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=2×(﹣2),S=1+2×(﹣2),i=2滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=3×(﹣2)2,S=1+2×(﹣2)+3×(﹣2)2,i=3…觀察規(guī)律可知:滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=99×(﹣2)99,S=1+2×(﹣2)+3×(﹣2)2+…+1×(﹣2)99,i=1,此時(shí),應(yīng)該不滿足判斷框內(nèi)的條件,退出循環(huán),輸出S的值,所以判斷框中的條件應(yīng)是i<1.故選:A.【點(diǎn)睛】本題考查了當(dāng)型循環(huán)結(jié)構(gòu),當(dāng)型循環(huán)是先判斷后執(zhí)行,滿足條件執(zhí)行循環(huán),不滿足條件時(shí)算法結(jié)束,屬于基礎(chǔ)題.3、C【解析】

求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.【點(diǎn)睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計(jì)算能力,屬于基礎(chǔ)題.4、A【解析】

由,兩邊平方后展開整理,即可求得,則的長(zhǎng)可求.【詳解】解:,,,,,,.,,故選:.【點(diǎn)睛】本題考查了向量的多邊形法則、數(shù)量積的運(yùn)算性質(zhì)、向量垂直與數(shù)量積的關(guān)系,考查了空間想象能力,考查了推理能力與計(jì)算能力,屬于中檔題.5、A【解析】由題意,將楔體分割為三棱柱與兩個(gè)四棱錐的組合體,作出幾何體的直觀圖如圖所示:

沿上棱兩端向底面作垂面,且使垂面與上棱垂直,

則將幾何體分成兩個(gè)四棱錐和1個(gè)直三棱柱,

則三棱柱的體積V1四棱錐的體積V2=13×1×3×2=2【點(diǎn)睛】本題考查三視圖及幾何體體積的計(jì)算,其中正確還原幾何體,利用方格數(shù)據(jù)分割與計(jì)算是解題的關(guān)鍵.6、A【解析】

根據(jù)遞增數(shù)列的特點(diǎn)可知,解得,由此得到若是遞增數(shù)列,則,根據(jù)推出關(guān)系可確定結(jié)果.【詳解】若“是遞增數(shù)列”,則,即,化簡(jiǎn)得:,又,,,則是遞增數(shù)列,是遞增數(shù)列,“”是“為遞增數(shù)列”的必要不充分條件.故選:.【點(diǎn)睛】本題考查充分條件與必要條件的判斷,涉及到根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍,屬于基礎(chǔ)題.7、A【解析】

根據(jù)直線:過雙曲線的一個(gè)焦點(diǎn),得,又和其中一條漸近線平行,得到,再求雙曲線方程.【詳解】因?yàn)橹本€:過雙曲線的一個(gè)焦點(diǎn),所以,所以,又和其中一條漸近線平行,所以,所以,,所以雙曲線方程為.故選:A.【點(diǎn)睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.8、B【解析】

由函數(shù)的奇偶性可得,【詳解】∵其中為奇函數(shù),也為奇函數(shù)∴也為奇函數(shù)∴故選:B【點(diǎn)睛】函數(shù)奇偶性的運(yùn)用即得結(jié)果,小記,定義域關(guān)于原點(diǎn)對(duì)稱時(shí)有:①奇函數(shù)±奇函數(shù)=奇函數(shù);②奇函數(shù)×奇函數(shù)=偶函數(shù);③奇函數(shù)÷奇函數(shù)=偶函數(shù);④偶函數(shù)±偶函數(shù)=偶函數(shù);⑤偶函數(shù)×偶函數(shù)=偶函數(shù);⑥奇函數(shù)×偶函數(shù)=奇函數(shù);⑦奇函數(shù)÷偶函數(shù)=奇函數(shù)9、C【解析】

由已知中的三視圖,可知該幾何體是一個(gè)以俯視圖為底面的三棱錐,求出底面面積,代入錐體體積公式,可得答案.【詳解】由已知中的三視圖,可知該幾何體是一個(gè)以俯視圖為底面的三棱錐,其底面面積,高,故體積,故選:.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是由三視圖求幾何體的體積,解決本題的關(guān)鍵是得到該幾何體的形狀.10、A【解析】

根據(jù)偶次根式被開方數(shù)非負(fù)可得出關(guān)于的不等式,即可解得函數(shù)的定義域.【詳解】由題意可得,解得或.因此,函數(shù)的定義域?yàn)榛?故選:A.【點(diǎn)睛】本題考查具體函數(shù)定義域的求解,考查計(jì)算能力,屬于基礎(chǔ)題.11、B【解析】

利用復(fù)數(shù)的四則運(yùn)算以及幾何意義即可求解.【詳解】解:,則復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為:,位于第二象限.故選:B.【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算以及復(fù)數(shù)的幾何意義,屬于基礎(chǔ)題.12、C【解析】

由題意得,可求得,再根據(jù)共軛復(fù)數(shù)的定義可得選項(xiàng).【詳解】由題意得,解得,所以,所以,故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的幾何表示和共軛復(fù)數(shù)的定義,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設(shè)的中心為T,AB的中點(diǎn)為N,AC中點(diǎn)為M,分別過M,T做平面ABC,平面PAB的垂線,則垂線的交點(diǎn)為球心O,將的長(zhǎng)度求出或用球半徑表示,再利用余弦定理即可建立方程解得半徑.【詳解】設(shè)的中心為T,AB的中點(diǎn)為N,AC中點(diǎn)為M,分別過M,T做平面ABC,平面PAB的垂線,則垂線的交點(diǎn)為球心O,如圖所示因?yàn)?,,所以,,,又二面角的大小為,則,,所以,設(shè)外接球半徑為R,則,,在中,由余弦定理,得,即,解得,故三棱錐外接球的表面積.故答案為:.【點(diǎn)睛】本題考查三棱錐外接球的表面積問題,解決此類問題一定要數(shù)形結(jié)合,建立關(guān)于球的半徑的方程,本題計(jì)算量較大,是一道難題.14、存在,使得【解析】試題分析:根據(jù)命題否定的概念,可知命題“對(duì)任意,”的否定是“存在,使得”.考點(diǎn):命題的否定.15、【解析】

由已知可得、的坐標(biāo),求得的垂直平分線方程,聯(lián)立已知直線方程與橢圓方程,求得的垂直平分線方程,兩垂直平分線方程聯(lián)立求得外心的橫坐標(biāo),再由導(dǎo)數(shù)求最值.【詳解】如圖,由已知條件可知,不妨設(shè),則外心在的垂直平分線上,即在直線,也就是在直線上,聯(lián)立,得或,的中點(diǎn)坐標(biāo)為,則的垂直平分線方程為,把代入上式,得,令,則,由,得(舍)或.當(dāng)時(shí),,當(dāng)時(shí),.當(dāng)時(shí),函數(shù)取極大值,亦為最大值.故答案為:.【點(diǎn)睛】本題考查直線與橢圓位置關(guān)系的應(yīng)用,訓(xùn)練了利用導(dǎo)數(shù)求最值,是中等題.16、12821【解析】

令,求得的值.利用展開式的通項(xiàng)公式,求得的值.【詳解】令,得.展開式的通項(xiàng)公式為,當(dāng)時(shí),為,即.【點(diǎn)睛】本小題主要考查二項(xiàng)式展開式的通項(xiàng)公式,考查賦值法求解二項(xiàng)式系數(shù)有關(guān)問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】

(1)取的中點(diǎn),連接,通過證明,即可證得;(2)建立空間直角坐標(biāo)系,利用向量的坐標(biāo)表示即可得解.【詳解】(1)證明:取的中點(diǎn),連接.是的中點(diǎn),,又,四邊形是平行四邊形.,又平面平面,平面.(2),,同理可得:,又平面.連接,設(shè),則,建立空間直角坐標(biāo)系.設(shè)平面的法向量為,則,則,取.直線與平面所成角的正弦值為.【點(diǎn)睛】此題考查證明線面平行,求線面角的大小,關(guān)鍵在于熟練掌握線面平行的證明方法,法向量法求線面角的基本方法,根據(jù)公式準(zhǔn)確計(jì)算.18、(1),.(2)【解析】

(1)先將曲線的參數(shù)方程化為直角坐標(biāo)方程,即可代入公式化為極坐標(biāo);根據(jù)直線的直角坐標(biāo)方程,求得傾斜角,即可得極坐標(biāo)方程.(2)將直線的極坐標(biāo)方程代入曲線、可得,進(jìn)而代入可得的值.【詳解】(1)曲線的參數(shù)方程為(為參數(shù)),消去得,把,代入得,從而得的極坐標(biāo)方程為,∵直線的直角坐標(biāo)方程為,其傾斜角為,∴直線的極坐標(biāo)方程為.(2)將代入曲線的極坐標(biāo)方程分別得到,則.【點(diǎn)睛】本題考查了參數(shù)方程化為普通方程的方法,直角坐標(biāo)方程化為極坐標(biāo)方程的方法,極坐標(biāo)的幾何意義,屬于中檔題.19、(1).(2)【解析】

(1)先設(shè)等差數(shù)列{an}的公差為d(d>0),然后根據(jù)等差數(shù)列的通項(xiàng)公式及已知條件可列出關(guān)于d的方程,解出d的值,即可得到數(shù)列{an}的通項(xiàng)an;(2)先根據(jù)第(1)題的結(jié)果計(jì)算出數(shù)列{bn}的通項(xiàng)公式,然后運(yùn)用錯(cuò)位相減法計(jì)算前n項(xiàng)和Tn.【詳解】(1)由題意,設(shè)等差數(shù)列{an}的公差為d(d>0),則a4a5=(1+3d)(1+4d)=11,整理,得12d2+7d﹣10=0,解得d(舍去),或d,∴an=1(n﹣1),n∈N*.(2)由(1)知,bn=an?3n?3n=(2n+1)?3n﹣1,∴Tn=b1+b2+b3+…+bn=3×1+5×31+7×32+…+(2n+1)?3n﹣1,∴3Tn=3×31+5×32+…+(2n﹣1)?3n﹣1+(2n+1)?3n,兩式相減,可得:﹣2Tn=3×1+2×31+2×32+…+2?3n﹣1﹣(2n+1)?3n=3+2×(31+32+…+3n﹣1)﹣(2n+1)?3n=3+2(2n+1)?3n=﹣2n?3n,∴Tn=n?3n.【點(diǎn)睛】本題主要考查等差數(shù)列基本量的計(jì)算,以及運(yùn)用錯(cuò)位相減法計(jì)算前n項(xiàng)和.考查了轉(zhuǎn)化與化歸思想,方程思想,錯(cuò)位相減法的運(yùn)用,以及邏輯思維能力和數(shù)學(xué)運(yùn)算能力.屬于中檔題.20、(1),;(2)見解析【解析】

(1)消去t,得直線的普通方程,利用極坐標(biāo)與普通方程互化公式得曲線的直角坐標(biāo)方程;(2)判斷與圓相離,連接,在中,,即可求解【詳解】(1)將的參數(shù)方程(為參數(shù))消去參數(shù),得.因?yàn)?,,所以曲線的直角坐標(biāo)方程為.(2)由(1)知曲線是以為圓心,3為半徑的圓,設(shè)圓心為,則圓心到直線的距離,所以與圓相離,且.連接,在中,,所以,,即的最小值為.【點(diǎn)睛】本題考查參數(shù)方程化普通方程,極坐標(biāo)與普通方程互化,直線與圓的位置關(guān)系,是中檔題21、(1)證明見解析(2)【解析】

(1)取中點(diǎn)為,連接,,,,根據(jù)線段關(guān)系可證明為等邊三角形,即可得;由為等邊三角形,可得,從而由線面垂直判斷定理可證明平面,即可證明.(2)以為原點(diǎn),,,為,,軸建立空間直角坐標(biāo)系,寫出各個(gè)點(diǎn)的坐標(biāo),并求得平面和平面的法向量,即可由法向量法求得二面角的余弦值.【詳解】(1)證明:取中點(diǎn)為,連接,,,如下圖所示:因?yàn)椋?,,所以,故為等邊三角形,則.連接,因?yàn)?,,所以為等邊三角形,則.又,所以平面.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論