版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
青島市重點中學2025屆數學九上期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.已知反比例函數,下列結論中不正確的是()A.圖象必經過點 B.隨的增大而增大C.圖象在第二,四象限內 D.若,則2.若將拋物線向右平移2個單位后,所得拋物線的表達式為y=2x2,則原來拋物線的表達式為()A.y=2x2+2 B.y=2x2﹣2 C.y=2(x+2)2 D.y=2(x﹣2)23.的值等于()A. B. C.1 D.4.如圖,在平面直角坐標系中,等腰直角三角形ABC的頂點A、B分別在x軸、y軸的正半軸上,∠ABC=90°,CA⊥x軸,點C在函數y=(x>0)的圖象上,若AB=2,則k的值為()A.4 B.2 C.2 D.5.如圖,點B,C,D在⊙O上,若∠BCD=130°,則∠BOD的度數是()A.50° B.60° C.80° D.100°6.如圖,在Rt△ABC中,∠ABC=90°,BA=BC.點D是AB的中點,連結CD,過點B作BG⊥CD,分別交CD、CA于點E、F,與過點A且垂直于AB的直線相交于點G,連結DF.給出以下四個結論:①;②點F是GE的中點;③;④,其中正確的結論個數是()A.4個 B.3個 C.2個 D.1個7.如圖,為的直徑,弦于點,,,則的半徑為()A.5 B.8 C.3 D.108.在數軸上,點A所表示的實數為3,點B所表示的實數為a,⊙A的半徑為2,下列說法中不正確的是()A.當1<a<5時,點B在⊙A內B.當a<5時,點B在⊙A內C.當a<1時,點B在⊙A外D.當a>5時,點B在⊙A外9.如圖,點,,都在上,若,則為()A. B. C. D.10.二次函數y=x1+bx﹣t的對稱軸為x=1.若關于x的一元二次方程x1+bx﹣t=0在﹣1<x<3的范圍內有實數解,則t的取值范圍是()A.﹣4≤t<5 B.﹣4≤t<﹣3 C.t≥﹣4 D.﹣3<t<511.已知方程的兩根為,則的值為()A.-1 B.1 C.2 D.012.如圖,點A(m,m+1)、B(m+3,m?1)是反比例函數與直線AB的交點,則直線AB的函數解析式為()A. B.C. D.二、填空題(每題4分,共24分)13.已知反比例函數的圖象經過點,則這個反比例函數的解析式是__________.14.毛澤東在《沁園春·雪》中提到五位歷史名人:秦始皇、漢武帝、唐太宗、宋太祖、成吉思汗.小紅將這五位名人簡介分別寫在五張完全相同的知識卡片上.小哲從中隨機抽取一張,卡片上介紹的人物是唐朝以后出生的概率是_______.15.拋物線y=x2﹣4x的對稱軸為直線_____.16.如圖,在中,,為邊上一點,已知,,,則____________.17.如圖,是的中線,點是線段上的一點,且,交于點.若,則_________.18.已知關于的二次函數的圖象如圖所示,則關于的方程的根為__________三、解答題(共78分)19.(8分)如圖,在△ABC中,AB=AC,點D、E在邊BC上,∠DAE=∠B=30°,且,那么的值是______.20.(8分)如圖,拋物線經過點A(1,0),B(4,0)與軸交于點C.(1)求拋物線的解析式;(2)如圖①,在拋物線的對稱軸上是否存在點P,使得四邊形PAOC的周長最小?若存在,求出四邊形PAOC周長的最小值;若不存在,請說明理由.(3)如圖②,點Q是線段OB上一動點,連接BC,在線段BC上是否存在這樣的點M,使△CQM為等腰三角形且△BQM為直角三角形?若存在,求M的坐標;若不存在,請說明理由.21.(8分)拋物線與軸交于兩點(點在點的左側),且,,與軸交于點,點的坐標為(0,-2),連接,以為邊,點為對稱中心作菱形.點是軸上的一個動點,設點的坐標為,過點作軸的垂線交拋物線與點,交于點.(1)求拋物線的解析式;(2)軸上是否存在一點,使三角形為等腰三角形,若存在,請直接寫出點的坐標;若不存在,請說明理由;(3)當點在線段上運動時,試探究為何值時,四邊形是平行四邊形?請說明理由.22.(10分)如圖,已知一次函數與反比例函數的圖象交于、兩點.(1)求一次函數與反比例函數的表達式;(2)求的面積;23.(10分)如圖是某貨站傳送貨物的平面示意圖.原傳送帶與地面的夾角為,,為了縮短貨物傳送距離,工人師傅欲增大傳送帶與地面的夾角,使其由改為,原傳送帶長為.求:(1)新傳送帶的長度;(2)求的長度.24.(10分)閱讀材料:材料2若一元二次方程ax2+bx+c=0(a≠0)的兩個根為x2,x2則x2+x2=﹣,x2x2=.材料2已知實數m,n滿足m2﹣m﹣2=0,n2﹣n﹣2=0,且m≠n,求的值.解:由題知m,n是方程x2﹣x﹣2=0的兩個不相等的實數根,根據材料2得m+n=2,mn=﹣2,所以=﹣2.根據上述材料解決以下問題:(2)材料理解:一元二次方程5x2+20x﹣2=0的兩個根為x2,x2,則x2+x2=,x2x2=.(2)類比探究:已知實數m,n滿足7m2﹣7m﹣2=0,7n2﹣7n﹣2=0,且m≠n,求m2n+mn2的值:(2)思維拓展:已知實數s、t分別滿足29s2+99s+2=0,t2+99t+29=0,且st≠2.求的值.25.(12分)鎮(zhèn)江某特產專賣店銷售某種特產,其進價為每千克40元,若按每千克60元出售,則平均每天可售出100千克,后來經過市場調查發(fā)現,單價每降低1元,平均每天的銷售量增加10千克,若專賣店銷售這種特產想要平均每天獲利2240元,且銷量盡可能大,則每千克特產應定價多少元?26.如圖,已知二次函數y=x2﹣4x+3圖象與x軸分別交于點B、D,與y軸交于點C,頂點為A,分別連接AB,BC,CD,DA.(1)求四邊形ABCD的面積;(2)當y>0時,自變量x的取值范圍是.
參考答案一、選擇題(每題4分,共48分)1、B【分析】根據反比例函數圖象上點的坐標特點:橫縱坐標之積=k,可以判斷出A的正誤;根據反比例函數的性質:k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內y隨x的增大而增大可判斷出B、C、D的正誤.【詳解】A、反比例函數,所過的點的橫縱坐標之積=?6,此結論正確,故此選項不符合題意;B、反比例函數,在每一象限內y隨x的增大而增大,此結論不正確,故此選項符合題意;C、反比例函數,圖象在第二、四象限內,此結論正確,故此選項不合題意;D、反比例函數,當x>1時圖象在第四象限,y隨x的增大而增大,故x>1時,?6<y<0;故選:B.【點睛】此題主要考查了反比例函數的性質,以及反比例函數圖象上點的坐標特點,關鍵是熟練掌握反比例函數的性質:(1)反比例函數y=(k≠0)的圖象是雙曲線;(2)當k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內y隨x的增大而減??;(3)當k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內y隨x的增大而增大.2、C【解析】分析:根據平移的規(guī)律,把已知拋物線的解析式向左平移即可得到原來拋物線的表達式.詳解:∵將拋物線向右平移1個單位后,所得拋物線的表達式為y=1x1,∴原拋物線可看成由拋物線y=1x1向左平移1個單位可得到原拋物線的表達式,∴原拋物線的表達式為y=1(x+1)1.故選C.點睛:本題主要考查了二次函數的圖象與幾何變換,掌握函數圖象的平移規(guī)律是解題的關鍵,即“左加右減,上加下減”.3、A【分析】根據特殊角的三角函數值,即可得解.【詳解】.故選:A.【點睛】此題屬于容易題,主要考查特殊角的三角函數值.失分的原因是沒有掌握特殊角的三角函數值.4、A【解析】作BD⊥AC于D,如圖,先利用等腰直角三角形的性質得到AC=AB=2,BD=AD=CD=,再利用AC⊥x軸得到C(,2),然后根據反比例函數圖象上點的坐標特征計算k的值.【詳解】作BD⊥AC于D,如圖,∵△ABC為等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x軸,∴C(,2),把C(,2)代入y=得k=×2=4,故選A.【點睛】本題考查了等腰直角三角形的性質以及反比例函數圖象上點的坐標特征,熟知反比例函數y=(k為常數,k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k是解題的關鍵.5、D【分析】首先圓上取一點A,連接AB,AD,根據圓的內接四邊形的性質,即可得∠BAD+∠BCD=180°,即可求得∠BAD的度數,再根據圓周角的性質,即可求得答案.【詳解】圓上取一點A,連接AB,AD,∵點A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°.故選D.【點睛】此題考查了圓周角的性質與圓的內接四邊形的性質.此題比較簡單,解題的關鍵是注意數形結合思想的應用,注意輔助線的作法.6、C【分析】易得AG∥BC,進而可得△AFG∽△CFB,然后根據相似三角形的性質以及BA=BC即可判斷①;根據余角的性質可得∠ABG=∠BCD,然后利用“角邊角”可證明△ABG≌△BCD,可得AG=BD,于是有AG=BC,由①根據相似三角形的性質可得,進而可得FG=FB,然后根據FE≠BE即可判斷②;根據相似三角形的性質可得,再根據等腰直角三角形的性質可得AC=AB,然后整理即可判斷③;過點F作FM⊥AB于M,如圖,根據相似三角形的性質和三角形的面積整理即可判斷④.【詳解】解:在Rt△ABC中,∵∠ABC=90°,∴AB⊥BC,∵AG⊥AB,∴AG∥BC,∴△AFG∽△CFB,∴,∵BA=BC,∴,故①正確;∵∠ABC=90°,BG⊥CD,∴∠ABG+∠CBG=90°,∠BCD+∠CBG=90°,∴∠ABG=∠BCD,又∵BA=BC,∠BAG=∠CBD=90°,∴△ABG≌和△BCD(ASA),∴AG=BD,∵點D是AB的中點,∴BD=AB,∴AG=BC,∵△AFG∽△CFB,∴,∴FG=FB,∵FE≠BE,∴點F是GE的中點不成立,故②錯誤;∵△AFG∽△CFB,∴,∴AF=AC,∵AC=AB,∴,故③正確;過點F作FM⊥AB于M,如圖,則FM∥CB,∴△AFM∽△ACB,∴,∵,∴,故④錯誤.綜上所述,正確的結論有①③共2個.故選:C.【點睛】本題考查了相似三角形的判定與性質、全等三角形的判定與性質和等腰直角三角形的性質等知識,屬于??碱}型,熟練掌握全等三角形和相似三角形的判定和性質是解題的關鍵.7、A【分析】作輔助線,連接OA,根據垂徑定理得出AE=BE=4,設圓的半徑為r,再利用勾股定理求解即可.【詳解】解:如圖,連接OA,設圓的半徑為r,則OE=r-2,∵弦,∴AE=BE=4,由勾股定理得出:,解得:r=5,故答案為:A.【點睛】本題考查的知識點主要是垂徑定理、勾股定理及其應用問題;解題的關鍵是作輔助線,靈活運用勾股定理等幾何知識點來分析、判斷或解答.8、B【解析】試題解析:由于圓心A在數軸上的坐標為3,圓的半徑為2,∴當d=r時,⊙A與數軸交于兩點:1、5,故當a=1、5時點B在⊙A上;當d<r即當1<a<5時,點B在⊙A內;當d>r即當a<1或a>5時,點B在⊙A外.由以上結論可知選項A、C、D正確,選項B錯誤.故選B.點睛:若用d、r分別表示點到圓心的距離和圓的半徑,則當d>r時,點在圓外;當d=r時,點在圓上;當d<r時,點在圓內.9、D【分析】直接根據圓周角定理求解.【詳解】∵∠C=34°,
∴∠AOB=2∠C=68°.
故選:D.【點睛】此題考查圓周角定理,解題關鍵在于掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.10、A【解析】根據拋物線對稱軸公式可先求出b的值,一元二次方程x1+bx﹣t=0在﹣1<x<3的范圍內有實數解相當于y=x1﹣bx與直線y=t的在﹣1<x<3的范圍內有交點,即直線y=t應介于過y=x1﹣bx在﹣1<x<3的范圍內的最大值與最小值的直線之間,由此可確定t的取值范圍.【詳解】解:∵拋物線的對稱軸x==1,∴b=﹣4,則方程x1+bx﹣t=0,即x1﹣4x﹣t=0的解相當于y=x1﹣4x與直線y=t的交點的橫坐標,∵方程x1+bx﹣t=0在﹣1<x<3的范圍內有實數解,∴當x=﹣1時,y=1+4=5,當x=3時,y=9﹣11=﹣3,又∵y=x1﹣4x=(x﹣1)1﹣4,∴當﹣4≤t<5時,在﹣1<x<3的范圍內有解.∴t的取值范圍是﹣4≤t<5,故選:A.【點睛】本題主要考查了二次函數與一元二次方程之間的關系,一元二次方程的解相當于與直線y=k的交點的橫坐標,解的數量就是交點的個數,熟練將二者關系進行轉化是解題的關鍵.11、D【分析】先根據一元二次方程的解的定義得到a2-a-1=1,即a2-a=1,則a2-2a-b可化簡為a2-a-a-b,再根據根與系數的關系得a+b=1,ab=-1,然后利用整體代入的方法計算.【詳解】解:∵a是方程的實數根,
∴a2-a-1=1,
∴a2-a=1,
∴a2-2a-b=a2-a-a-b=(a2-a)-(a+b),
∵a、b是方程的兩個實數根,
∴a+b=1,
∴a2-2a-b=1-1=1.
故選D.【點睛】本題考查了根與系數的關系:若x1,x2是一元二次方程ax2+bx+c=1(a≠1)的兩根時,x1+x2=,x1?x2=.12、B【分析】根據反比例函數的特點k=xy為定值,列出方程,求出m的值,便可求出一次函數的解析式;【詳解】由題意可知,m(m+1)=(m+1)(m-1)
解得m=1.
∴A(1,4),B(6,2);
設AB的解析式為∴解得∴AB的解析式為故選B.【點睛】此題考查的是反比例函數圖象上點的坐標特點及用待定系數法求一次函數及反比例函數的解析式,比較簡單.二、填空題(每題4分,共24分)13、【分析】把點,代入求解即可.【詳解】解:由于反比例函數的圖象經過點,∴把點,代入中,解得k=6,所以函數解析式為:故答案為:【點睛】本題考查待定系數法解函數解析式,掌握待定系數法的解題步驟正確計算是關鍵.14、【詳解】試題分析:在秦始皇、漢武帝、唐太宗、宋太祖、成吉思汗5五人中,唐朝以后出生的有2人.因此在上述5人中隨機抽取一張,所有抽到的人物為唐朝以后出生的概率=.故答案為.考點:概率公式15、x=1.【分析】用對稱軸公式直接求解.【詳解】拋物線y=x1﹣4x的對稱軸為直線x==﹣=1.故答案為x=1.【點睛】本題主要考查二次函數的性質,掌握二次函數的對稱軸公式x=是本題的解題關鍵..16、【分析】由題意直接根據特殊三角函數值,進行分析計算即可得出答案.【詳解】解:∵在中,,,,∴,∴,∵,∴,∴.故答案為:.【點睛】本題考查銳角三角函數,熟練掌握三角函數定義以及特殊三角函數值進行分析是解題的關鍵.17、【分析】過點A作AG∥BC交CF的延長線于G,根據平行即可證出△AGE∽△DCE,△AGF∽△BCF,列出比例式,根據已知條件即可求出AB.【詳解】解:過點A作AG∥BC交CF的延長線于G,如下圖所示∴△AGE∽△DCE,△AGF∽△BCF∴,∵∴∴∵是的中線,∴∴∴解得:cm∴AB=AF+BF=1cm故答案為:1.【點睛】此題考查的是相似三角形的判定及性質,掌握構造相似三角形的方法是解決此題的關鍵.18、0或-1【分析】求關于的方程的根,其實就是求在二次函數中,當y=4時x的值,據此可解.【詳解】解:∵拋物線與x軸的交點為(-4,0),(1,0),∴拋物線的對稱軸是直線x=-1.5,∴拋物線與y軸的交點為(0,4)關于對稱軸的對稱點坐標是(-1,4),
∴當x=0或-1時,y=4,即=4,即=0∴關于x的方程ax2+bx=0的根是x1=0,x2=-1.故答案為:x1=0,x2=-1.【點睛】本題考查的是二次函數與一元二次方程的關系,能根據題意利用數形結合把求出方程的解的問題轉化為二次函數的問題是解答此題的關鍵.三、解答題(共78分)19、.【分析】由已知可得,從而可知,,設AB=3x,則BE=2x,再利用勾股定理和等腰三角形性質用x表示DE和BC,從而解答【詳解】解:∵∠BAE=∠DAE+∠BAD,∠ADE=∠B+∠BAD,又∵∠DAE=∠B=30°,∴∠BAE=∠ADE,∴,∴,,過A點作AH⊥BC,垂足為H,設AB=3x,則BE=2x,∵∠B=30°,∴,,∴,在中,,又∵,∴,∴,∵AB=AC,AH⊥BC,∴,∴,故答案為:.【點睛】本題考查了相似三角形的判定和性質、等腰三角形的性質以及勾股定理,利用三角形相似得到AB與BE的關系是解題的關鍵.20、(1);(2)9;(3)存在點M的坐標為()或()使△CQM為等腰三角形且△BQM為直角三角形【分析】(1)根據拋物線經過A、B兩點,帶入解析式,即可求得a、b的值.(2)根據PA=PB,要求四邊形PAOC的周長最小,只要P、B、C三點在同一直線上,因此很容易計算出最小周長.(3)首先根據△BQM為直角三角形,便可分為兩種情況QM⊥BC和QM⊥BO,再結合△QBM∽△CBO,根據相似比例便可求解.【詳解】解:(1)將點A(1,0),B(4,0)代入拋物線中,得:解得:所以拋物線的解析式為.(2)由(1)可知,拋物線的對稱軸為直線.連接BC,交拋物線的對稱軸為點P,此時四邊形PAOC的周長最小,最小值為OA+OC+BC=1+3+5=9.(3)當QM⊥BC時,易證△QBM∽△CBO所以,又因為△CQM為等腰三角形,所以QM=CM.設CM=x,則BM=5-x所以所以.所以QM=CM=,BM=5-x=,所以BM:CM=4:3.過點M作NM⊥OB于N,則MN//OC,所以,即,所以,所以點M的坐標為()當QM⊥BO時,則MQ//OC,所以,即設QM=3t,則BQ=4t,又因為△CQM為等腰三角形,所以QM=CM=3t,BM=5-3t又因為QM2+QB2=BM2,所以(3t)2+(4t)2=(5-3t)2,解得MQ=3t=,,所以點M的坐標為().綜上所述,存在點M的坐標為()或()使△CQM為等腰三角形且△BQM為直角三角形【點睛】本題是一道二次函數的綜合型題目,難度系數較高,關鍵在于根據圖形化簡問題,這道題涉及到一種分類討論的思想,這是這道題的難點所在,分類討論思想的關鍵在于根據直角三角形的直角進行分類的.21、(1)y=x2-x-2;(2)P的坐標為(,0)或(4+2,0)或(4-2,0)或(-4,0);(3)m=1時.【分析】(1)根據題意,可設拋物線表達式為,再將點C坐標代入即可;(2)設點P的坐標為(m,0),表達出PB2、PC2、BC2,再進行分類討論即可;(3)根據“當MQ=DC時,四邊形CQMD為平行四邊形”,用m的代數式表達出MQ=DC求解即可.【詳解】解:(1)∵拋物線與x軸交于A(-1,0),B(4,0)兩點,
故可設拋物線的表達式為:,將C(0,-2)代入得:-4a=-2,解得:a=∴拋物線的解析式為:y=x2-x-2(2)設點P的坐標為(m,0),
則PB2=(m-4)2,PC2=m2+4,BC2=20,
①當PB=PC時,(m-4)2=m2+4,解得:m=②當PB=BC時,同理可得:m=4±2③當PC=BC時,同理可得:m=±4(舍去4),故點P的坐標為(,0)或(4+2,0)或(4-2,0)或(-4,0);(3)∵C(0,-2)
∴由菱形的對稱性可知,點D的坐標為(0,2),
設直線BD的解析式為y=kx+2,又B(4,0)
解得k=-1,
∴直線BD的解析式為y=-x+2;
則點M的坐標為(m,-m+2),點Q的坐標為(m,m2-m-2)當MQ=DC時,四邊形CQMD為平行四邊形∴-m+2-(m2-m-2)=2-(-2)解得m=0(舍去)m=1故當m=1時,四邊形CQMD為平行四邊形.【點睛】本題考查了二次函數與幾何的綜合應用,難度適中,解題的關鍵是靈活應用二次函數的性質與三角形、四邊形的判定及性質.22、(1)y=;(2)12【分析】(1)將點A分別代入一次函數與反比例函數,即可求出相應的解析式;(2)如圖,將△AOB的面積轉化為△AOC的面積和△BOC的面積和即可求出.【詳解】(1)解:y=x-b過A(-5,-1)-1=-5-b;b=-4y=x-+4y=過A(-5,-1),k=-5×(-1)=5y=(2)如下圖,直線與y軸交于點C,連接AO,BO∵直線解析式為:y=x+4∴C(0,4),CO=4由圖形可知,∴.【點睛】本題考查一次函數與反比例函數的綜合,求△AOB面積的關鍵是將△AOB的面積轉化為△AOC和△BOC的面積和來求解.23、(1);(2)【分析】(1)在構建的直角三角形中,首先求出兩個直角三角形的公共直角邊,進而在Rt△ACD中,求出AC的長.(2)利用求出BD,利用求出CD,故可求解.【詳解】解:(1)∵,,∴在中,,在中,,∴.(2)在中,,在中,,∴.【點睛】考查了坡度坡角問題,應用問題盡管題型千變萬化,但關鍵是設法化歸為解直角三角形問題,必要時應添加輔助線,構造出直角三角形.在兩個直角三角形有公共直角邊時,先求出公共邊的長是解答此類題的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年房屋水電安裝合同
- 2025房地產公司土地與資金合作開發(fā)合同
- 化學清洗設備銷售合同
- 2025合同模板代理記賬委托合同范本
- 烤鴨店租賃合同
- 2025投資咨詢服務合同
- 2025年分銷合同的銷售價格
- 2025版無財產分割離婚協(xié)議模板離婚后財產權益保障服務合同3篇
- 2025年度個人二手房購房合同范本及物業(yè)費支付及調整協(xié)議2篇
- 投資合作協(xié)議樣本
- 2025貴州貴陽市屬事業(yè)單位招聘筆試和高頻重點提升(共500題)附帶答案詳解
- 2024年住院醫(yī)師規(guī)范化培訓師資培訓理論考試試題
- 期末綜合測試卷(試題)-2024-2025學年五年級上冊數學人教版
- 招標采購基礎知識培訓
- 2024年廣東省公務員錄用考試《行測》試題及答案解析
- 電力系統(tǒng)分布式模型預測控制方法綜述與展望
- 五年級口算題卡每天100題帶答案
- 結構力學本構模型:斷裂力學模型:斷裂力學實驗技術教程
- 2024年貴州省中考理科綜合試卷(含答案)
- 無人機技術與遙感
- 恩施自治州建始東升煤礦有限責任公司東升煤礦礦產資源開發(fā)利用與生態(tài)復綠方案
評論
0/150
提交評論