版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
湖南省長沙市中學(xué)雅培粹校2023-2024學(xué)年中考猜題數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,△ABC紙片中,∠A=56,∠C=88°.沿過點(diǎn)B的直線折疊這個(gè)三角形,使點(diǎn)C落在AB邊上的點(diǎn)E處,折痕為BD.則∠BDE的度數(shù)為()A.76° B.74° C.72° D.70°2.(2011貴州安順,4,3分)我市某一周的最高氣溫統(tǒng)計(jì)如下表:最高氣溫(℃)
25
26
27
28
天數(shù)
1
1
2
3
則這組數(shù)據(jù)的中位數(shù)與眾數(shù)分別是()A.27,28 B.27.5,28 C.28,27 D.26.5,273.“趕陀螺”是一項(xiàng)深受人們喜愛的運(yùn)動(dòng).如圖所示是一個(gè)陀螺的立體結(jié)構(gòu)圖.已知底面圓的直徑AB=8cm,圓柱的高BC=6cm,圓錐的高CD=3cm,則這個(gè)陀螺的表面積是()A.68πcm2 B.74πcm2 C.84πcm2 D.100πcm24.已知,用尺規(guī)作圖的方法在上確定一點(diǎn),使,則符合要求的作圖痕跡是()A. B.C. D.5.已知a-2b=-2,則4-2a+4b的值是()A.0 B.2 C.4 D.86.如果代數(shù)式有意義,則實(shí)數(shù)x的取值范圍是()A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥37.如圖,CD是⊙O的弦,O是圓心,把⊙O的劣弧沿著CD對(duì)折,A是對(duì)折后劣弧上的一點(diǎn),∠CAD=100°,則∠B的度數(shù)是()A.100° B.80° C.60° D.50°8.下列運(yùn)算正確的是(
)A.a(chǎn)2·a3﹦a6
B.a(chǎn)3+a3﹦a6
C.|-a2|﹦a2
D.(-a2)3﹦a69.如圖,△ABC的面積為8cm2,AP垂直∠B的平分線BP于P,則△PBC的面積為(
)A.2cm2
B.3cm2
C.4cm2
D.5cm210.將弧長為2πcm、圓心角為120°的扇形圍成一個(gè)圓錐的側(cè)面,則這個(gè)圓錐的高是()A.cm B.2cm C.2cm D.cm11.若關(guān)于x的方程=3的解為正數(shù),則m的取值范圍是()A.m< B.m<且m≠C.m>﹣ D.m>﹣且m≠﹣12.如圖,AB是⊙O的直徑,弦CD⊥AB于E,∠CDB=30°,⊙O的半徑為,則弦CD的長為()A. B.3cm C. D.9cm二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.化簡代數(shù)式(x+1+)÷,正確的結(jié)果為_____.14.如圖,直線a∥b,直線c分別于a,b相交,∠1=50°,∠2=130°,則∠3的度數(shù)為()A.50° B.80° C.100° D.130°15.點(diǎn)(-1,a)、(-2,b)是拋物線上的兩個(gè)點(diǎn),那么a和b的大小關(guān)系是a_______b(填“>”或“<”或“=”).16.如圖,四邊形ABCD中,∠D=∠B=90°,AB=BC,CD=4,AC=8,設(shè)Q、R分別是AB、AD上的動(dòng)點(diǎn),則△CQR的周長的最小值為_________.17.如圖,已知函數(shù)y=x+2的圖象與函數(shù)y=(k≠0)的圖象交于A、B兩點(diǎn),連接BO并延長交函數(shù)y=(k≠0)的圖象于點(diǎn)C,連接AC,若△ABC的面積為1.則k的值為_____.18.如圖,在長方形ABCD中,AF⊥BD,垂足為E,AF交BC于點(diǎn)F,連接DF.圖中有全等三角形_____對(duì),有面積相等但不全等的三角形_____對(duì).三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB是⊙O的一條弦,E是AB的中點(diǎn),過點(diǎn)E作EC⊥OA于點(diǎn)C,過點(diǎn)B作⊙O的切線交CE的延長線于點(diǎn)D.(1)求證:DB=DE;(2)若AB=12,BD=5,求⊙O的半徑.20.(6分)某數(shù)學(xué)興趣小組為測量如圖(①所示的一段古城墻的高度,設(shè)計(jì)用平面鏡測量的示意圖如圖②所示,點(diǎn)P處放一水平的平面鏡,光線從點(diǎn)A出發(fā)經(jīng)過平面鏡反射后剛好射到古城墻CD的頂端C處.已知AB⊥BD、CD⊥BD,且測得AB=1.2m,BP=1.8m.PD=12m,求該城墻的高度(平面鏡的原度忽略不計(jì)):請(qǐng)你設(shè)計(jì)一個(gè)測量這段古城墻高度的方案.要求:①面出示意圖(不要求寫畫法);②寫出方案,給出簡要的計(jì)算過程:③給出的方案不能用到圖②的方法.21.(6分)《如果想毀掉一個(gè)孩子,就給他一部手機(jī)!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從2018年9月新學(xué)期起小學(xué)和初中禁止學(xué)生使用手機(jī).為了解學(xué)生手機(jī)使用情況,某學(xué)校開展了“手機(jī)伴我健康行”主題活動(dòng),他們隨機(jī)抽取部分學(xué)生進(jìn)行“使用手機(jī)目的”和“每周使用手機(jī)的時(shí)間”的問卷調(diào)查,并繪制成如圖①,②的統(tǒng)計(jì)圖,已知“查資料”的人數(shù)是40人.請(qǐng)你根據(jù)以上信息解答下列問題:在扇形統(tǒng)計(jì)圖中,“玩游戲”對(duì)應(yīng)的百分比為,圓心角度數(shù)是度;補(bǔ)全條形統(tǒng)計(jì)圖;該校共有學(xué)生2100人,估計(jì)每周使用手機(jī)時(shí)間在2小時(shí)以上(不含2小時(shí))的人數(shù).22.(8分)小明、小剛和小紅打算各自隨機(jī)選擇本周日的上午或下午去揚(yáng)州馬可波羅花世界游玩.小明和小剛都在本周日上午去游玩的概率為________;求他們?nèi)嗽谕粋€(gè)半天去游玩的概率.23.(8分)如圖,已知平行四邊形ABCD,將這個(gè)四邊形折疊,使得點(diǎn)A和點(diǎn)C重合,請(qǐng)你用尺規(guī)做出折痕所在的直線。(保留作圖痕跡,不寫做法)24.(10分)對(duì)于平面直角坐標(biāo)系中的點(diǎn),將它的縱坐標(biāo)與橫坐標(biāo)的比稱為點(diǎn)的“理想值”,記作.如的“理想值”.(1)①若點(diǎn)在直線上,則點(diǎn)的“理想值”等于_______;②如圖,,的半徑為1.若點(diǎn)在上,則點(diǎn)的“理想值”的取值范圍是_______.(2)點(diǎn)在直線上,的半徑為1,點(diǎn)在上運(yùn)動(dòng)時(shí)都有,求點(diǎn)的橫坐標(biāo)的取值范圍;(3),是以為半徑的上任意一點(diǎn),當(dāng)時(shí),畫出滿足條件的最大圓,并直接寫出相應(yīng)的半徑的值.(要求畫圖位置準(zhǔn)確,但不必尺規(guī)作圖)25.(10分)如圖,AD是△ABC的中線,過點(diǎn)C作直線CF∥AD.(問題)如圖①,過點(diǎn)D作直線DG∥AB交直線CF于點(diǎn)E,連結(jié)AE,求證:AB=DE.(探究)如圖②,在線段AD上任取一點(diǎn)P,過點(diǎn)P作直線PG∥AB交直線CF于點(diǎn)E,連結(jié)AE、BP,探究四邊形ABPE是哪類特殊四邊形并加以證明.(應(yīng)用)在探究的條件下,設(shè)PE交AC于點(diǎn)M.若點(diǎn)P是AD的中點(diǎn),且△APM的面積為1,直接寫出四邊形ABPE的面積.26.(12分)已知?jiǎng)狱c(diǎn)P以每秒2
cm的速度沿圖(1)的邊框按從B?C?D?E?F?A的路徑移動(dòng),相應(yīng)的△ABP的面積S與時(shí)間t之間的關(guān)系如圖(2)中的圖象表示.若AB=6
cm,試回答下列問題:(1)圖(1)中的BC長是多少?(2)圖(2)中的a是多少?(3)圖(1)中的圖形面積是多少?(4)圖(2)中的b是多少?27.(12分)如圖,已知拋物線y=ax2﹣2ax+b與x軸交于A、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,且OC=3OA,設(shè)拋物線的頂點(diǎn)為D.(1)求拋物線的解析式;(2)在拋物線對(duì)稱軸的右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC是等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;(3)若平行于x軸的直線與該拋物線交于M、N兩點(diǎn)(其中點(diǎn)M在點(diǎn)N的右側(cè)),在x軸上是否存在點(diǎn)Q,使△MNQ為等腰直角三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】
直接利用三角形內(nèi)角和定理得出∠ABC的度數(shù),再利用翻折變換的性質(zhì)得出∠BDE的度數(shù).【詳解】解:∵∠A=56°,∠C=88°,
∴∠ABC=180°-56°-88°=36°,
∵沿過點(diǎn)B的直線折疊這個(gè)三角形,使點(diǎn)C落在AB邊上的點(diǎn)E處,折痕為BD,
∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,
∴∠BDE=180°-18°-88°=74°.
故選:B.【點(diǎn)睛】此題主要考查了三角形內(nèi)角和定理,正確掌握三角形內(nèi)角和定理是解題關(guān)鍵.2、A【解析】根據(jù)表格可知:數(shù)據(jù)25出現(xiàn)1次,26出現(xiàn)1次,27出現(xiàn)2次,28出現(xiàn)3次,∴眾數(shù)是28,這組數(shù)據(jù)從小到大排列為:25,26,27,27,28,28,28∴中位數(shù)是27∴這周最高氣溫的中位數(shù)與眾數(shù)分別是27,28故選A.3、C【解析】試題分析:∵底面圓的直徑為8cm,高為3cm,∴母線長為5cm,∴其表面積=π×4×5+42π+8π×6=84πcm2,故選C.考點(diǎn):圓錐的計(jì)算;幾何體的表面積.4、D【解析】試題分析:D選項(xiàng)中作的是AB的中垂線,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC.故選D.考點(diǎn):作圖—復(fù)雜作圖.5、D【解析】∵a-2b=-2,∴-a+2b=2,∴-2a+4b=4,∴4-2a+4b=4+4=8,故選D.6、C【解析】
根據(jù)二次根式有意義和分式有意義的條件列出不等式,解不等式即可.【詳解】由題意得,x+3≥0,x≠0,解得x≥?3且x≠0,故選C.【點(diǎn)睛】本題考查分式有意義條件,二次根式有意義的條件,熟練掌握相關(guān)知識(shí)是解題的關(guān)鍵.7、B【解析】試題分析:如圖,翻折△ACD,點(diǎn)A落在A′處,可知∠A=∠A′=100°,然后由圓內(nèi)接四邊形可知∠A′+∠B=180°,解得∠B=80°.故選:B8、C【解析】
根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加;合并同類項(xiàng),只把系數(shù)相加減,字母與字母的次數(shù)不變;同底數(shù)冪相除,底數(shù)不變指數(shù)相減,對(duì)各選項(xiàng)計(jì)算后利用排除法求解.【詳解】a2·a3﹦a5,故A項(xiàng)錯(cuò)誤;a3+a3﹦2a3,故B項(xiàng)錯(cuò)誤;a3+a3﹦-a6,故D項(xiàng)錯(cuò)誤,選C.【點(diǎn)睛】本題考查同底數(shù)冪加減乘除及乘方,解題的關(guān)鍵是清楚運(yùn)算法則.9、C【解析】
延長AP交BC于E,根據(jù)AP垂直∠B的平分線BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以證明兩三角形面積相等,即可求得△PBC的面積.【詳解】延長AP交BC于E.∵AP垂直∠B的平分線BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵∠APB=∠EPBBP=BP∠ABP=∠EBP,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE=12S△ABC故選C.【點(diǎn)睛】本題考查了三角形面積和全等三角形的性質(zhì)和判定的應(yīng)用,關(guān)鍵是求出S△PBC=S△PBE+S△PCE=12S△10、B【解析】
由弧長公式可求解圓錐母線長,再由弧長可求解圓錐底面半徑長,再運(yùn)用勾股定理即可求解圓錐的高.【詳解】解:設(shè)圓錐母線長為Rcm,則2π=,解得R=3cm;設(shè)圓錐底面半徑為rcm,則2π=2πr,解得r=1cm.由勾股定理可得圓錐的高為=2cm.故選擇B.【點(diǎn)睛】本題考查了圓錐的概念和弧長的計(jì)算.11、B【解析】
解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,已知關(guān)于x的方程=3的解為正數(shù),所以﹣2m+9>0,解得m<,當(dāng)x=3時(shí),x==3,解得:m=,所以m的取值范圍是:m<且m≠.故答案選B.12、B【解析】
解:∵∠CDB=30°,∴∠COB=60°,又∵OC=,CD⊥AB于點(diǎn)E,∴,解得CE=cm,CD=3cm.故選B.考點(diǎn):1.垂徑定理;2.圓周角定理;3.特殊角的三角函數(shù)值.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、2x【解析】
根據(jù)分式的運(yùn)算法則計(jì)算即可求解.【詳解】(x+1+)÷===2x.故答案為2x.【點(diǎn)睛】本題考查了分式的混合運(yùn)算,熟知分式的混合運(yùn)算順序及運(yùn)算法則是解答本題的關(guān)鍵.14、B【解析】
根據(jù)平行線的性質(zhì)即可解決問題【詳解】∵a∥b,∴∠1+∠3=∠2,∵∠1=50°,∠2=130°,∴∠3=80°,故選B.【點(diǎn)睛】考查平行線的性質(zhì),解題的關(guān)鍵是熟練掌握平行線的性質(zhì),屬于中考基礎(chǔ)題.15、<【解析】把點(diǎn)(-1,a)、(-2,b)分別代入拋物線,則有:a=1-2-3=-4,b=4-4-3=-3,-4<-3,所以a<b,故答案為<.16、【解析】
作C關(guān)于AB的對(duì)稱點(diǎn)G,關(guān)于AD的對(duì)稱點(diǎn)F,可得三角形CQR的周長=CQ+QR+CR=GQ+QR+RF≥GF.根據(jù)圓周角定理可得∠CDB=∠CAB=45°,∠CBD=∠CAD=30°,由于GF=2BD,在三角形CBD中,作CH⊥BD于H,可求BD的長,從而求出△CQR的周長的最小值.【詳解】解:作C關(guān)于AB的對(duì)稱點(diǎn)G,關(guān)于AD的對(duì)稱點(diǎn)F,則三角形CQR的周長=CQ+QR+CR=GQ+QR+RF=GF,在Rt△ADC中,∵sin∠DAC=,∴∠DAC=30°,∵BA=BC,∠ABC=90°,∴∠BAC=∠BCA=45°,∵∠ADC=∠ABC=90°,∴A,B,C,D四點(diǎn)共圓,∴∠CDB=∠CAB=45°,∠CBD=∠CAD=30°在三角形CBD中,作CH⊥BD于H,BD=DH+BH=4×cos45°+×cos30°=,∵CD=DF,CB=BG,∴GF=2BD=,△CQR的周長的最小值為.【點(diǎn)睛】本題考查了軸對(duì)稱問題,關(guān)鍵是根據(jù)軸對(duì)稱的性質(zhì)和兩點(diǎn)之間線段最短解答.17、3【解析】
連接OA.根據(jù)反比例函數(shù)的對(duì)稱性可得OB=OC,那么S△OAB=S△OAC=S△ABC=2.求出直線y=x+2與y軸交點(diǎn)D的坐標(biāo).設(shè)A(a,a+2),B(b,b+2),則C(-b,-b-2),根據(jù)S△OAB=2,得出a-b=2
①.根據(jù)S△OAC=2,得出-a-b=2
②,①與②聯(lián)立,求出a、b的值,即可求解.【詳解】如圖,連接OA.由題意,可得OB=OC,∴S△OAB=S△OAC=S△ABC=2.設(shè)直線y=x+2與y軸交于點(diǎn)D,則D(0,2),設(shè)A(a,a+2),B(b,b+2),則C(-b,-b-2),∴S△OAB=×2×(a-b)=2,∴a-b=2
①.過A點(diǎn)作AM⊥x軸于點(diǎn)M,過C點(diǎn)作CN⊥x軸于點(diǎn)N,則S△OAM=S△OCN=k,∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=2,∴(-b-2+a+2)(-b-a)=2,將①代入,得∴-a-b=2
②,①+②,得-2b=6,b=-3,①-②,得2a=2,a=1,∴A(1,3),∴k=1×3=3.故答案為3.【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,反比例函數(shù)的性質(zhì),反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,三角形的面積,待定系數(shù)法求函數(shù)的解析式等知識(shí),綜合性較強(qiáng),難度適中.根據(jù)反比例函數(shù)的對(duì)稱性得出OB=OC是解題的突破口.18、11【解析】
根據(jù)長方形的對(duì)邊相等,每一個(gè)角都是直角可得AB=CD,AD=BC,∠BAD=∠C=90°,然后利用“邊角邊”證明Rt△ABD和Rt△CDB全等;根據(jù)等底等高的三角形面積相等解答.【詳解】有,Rt△ABD≌Rt△CDB,理由:在長方形ABCD中,AB=CD,AD=BC,∠BAD=∠C=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(SAS);有,△BFD與△BFA,△ABD與△AFD,△ABE與△DFE,△AFD與△BCD面積相等,但不全等.故答案為:1;1.【點(diǎn)睛】本題考查了全等三角形的判定,長方形的性質(zhì),以及等底等高的三角形的面積相等.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)【解析】試題分析:(1)由切線性質(zhì)及等量代換推出∠4=∠5,再利用等角對(duì)等邊可得出結(jié)論;(2)由已知條件得出sin∠DEF和sin∠AOE的值,利用對(duì)應(yīng)角的三角函數(shù)值相等推出結(jié)論.試題解析:(1)∵DC⊥OA,∴∠1+∠3=90°,∵BD為切線,∴OB⊥BD,∴∠2+∠5=90°,∵OA=OB,∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB中,∠4=∠5,∴DE=DB.(2)作DF⊥AB于F,連接OE,∵DB=DE,∴EF=BE=3,在RT△DEF中,EF=3,DE=BD=5,EF=3,∴DF=∴sin∠DEF==,∵∠AOE=∠DEF,∴在RT△AOE中,sin∠AOE=,∵AE=6,∴AO=.【點(diǎn)睛】本題考查了圓的性質(zhì),切線定理,三角形相似,三角函數(shù)等知識(shí),結(jié)合圖形正確地選擇相應(yīng)的知識(shí)點(diǎn)與方法進(jìn)行解題是關(guān)鍵.20、(1)8m;(2)答案不唯一【解析】
(1)根據(jù)入射角等于反射角可得∠APB=∠CPD,由AB⊥BD、CD⊥BD可得到∠ABP=∠CDP=90°,從而可證得三角形相似,根據(jù)相似三角形的性質(zhì)列出比例式,即可求出CD的長.(2)設(shè)計(jì)成視角問題求古城墻的高度.【詳解】(1)解:由題意,得∠APB=∠CPD,∠ABP=∠CDP=90°,∴Rt△ABP∽R(shí)t△CDP,∴,∴CD==8.答:該古城墻的高度為8m(2)解:答案不唯一,如:如圖,在距這段古城墻底部am的E處,用高h(yuǎn)(m)的測角儀DE測得這段古城墻頂端A的仰角為α.即可測量這段古城墻AB的高度,過點(diǎn)D作DCAB于點(diǎn)C.在Rt△ACD中,∠ACD=90°,tanα=,∴AC=αtanα,∴AB=AC+BC=αtanα+h【點(diǎn)睛】本題考查相似三角形性質(zhì)的應(yīng)用.解題時(shí)關(guān)鍵是找出相似的三角形,然后根據(jù)對(duì)應(yīng)邊成比例列出方程,建立適當(dāng)?shù)臄?shù)學(xué)模型來解決問題.21、(1)35%,126;(2)見解析;(3)1344人【解析】
(1)由扇形統(tǒng)計(jì)圖其他的百分比求出“玩游戲”的百分比,乘以360即可得到結(jié)果;(2)求出3小時(shí)以上的人數(shù),補(bǔ)全條形統(tǒng)計(jì)圖即可;(3)由每周使用手機(jī)時(shí)間在2小時(shí)以上(不含2小時(shí))的百分比乘以2100即可得到結(jié)果.【詳解】(1)根據(jù)題意得:1﹣(40%+18%+7%)=35%,則“玩游戲”對(duì)應(yīng)的圓心角度數(shù)是360°×35%=126°,故答案為35%,126;(2)根據(jù)題意得:40÷40%=100(人),∴3小時(shí)以上的人數(shù)為100﹣(2+16+18+32)=32(人),補(bǔ)全圖形如下:;(3)根據(jù)題意得:2100×=1344(人),則每周使用手機(jī)時(shí)間在2小時(shí)以上(不含2小時(shí))的人數(shù)約有1344人.【點(diǎn)睛】本題考查了條形統(tǒng)計(jì)圖,扇形統(tǒng)計(jì)圖,以及用樣本估計(jì)總體,準(zhǔn)確識(shí)圖,從中找到必要的信息進(jìn)行解題是關(guān)鍵.22、(1);(2)【解析】
(1)根據(jù)題意,畫樹狀圖列出三人隨機(jī)選擇上午或下午去游玩的所有等可能結(jié)果,找到小明和小剛都在本周日上午去游玩的結(jié)果,根據(jù)概率公式計(jì)算可得;(2)由(1)中樹狀圖,找到三人在同一個(gè)半天去游玩的結(jié)果,根據(jù)概率公式計(jì)算可得.【詳解】解:(1)根據(jù)題意,畫樹狀圖如圖:由樹狀圖可知,三人隨機(jī)選擇本周日的上午或下午去游玩共有8種等可能結(jié)果,其中小明和小剛都在本周日上午去游玩的結(jié)果有(上,上,上)、(上,上,下)2種,∴小明和小剛都在本周日上午去游玩的概率為=;(2)由(1)中樹狀圖可知,他們?nèi)嗽谕粋€(gè)半天去游玩的結(jié)果有(上,上,上)、(下,下,下)這2種,∴他們?nèi)嗽谕粋€(gè)半天去游玩的概率為=.答:他們?nèi)嗽谕粋€(gè)半天去游玩的概率是.【點(diǎn)睛】本題考查的是用列表法或樹狀圖法求概率.注意列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.23、答案見解析【解析】
根據(jù)軸對(duì)稱的性質(zhì)作出線段AC的垂直平分線即可得.【詳解】如圖所示,直線EF即為所求.【點(diǎn)睛】本題主要考查作圖-軸對(duì)稱變換,解題的關(guān)鍵是掌握軸對(duì)稱變換的性質(zhì)和線段中垂線的尺規(guī)作圖.24、(1)①﹣3;②;(2);(3)【解析】
(1)①把Q(1,a)代入y=x-4,可求出a值,根據(jù)理想值定義即可得答案;②由理想值越大,點(diǎn)與原點(diǎn)連線與軸夾角越大,可得直線與相切時(shí)理想值最大,與x中相切時(shí),理想值最小,即可得答案;(2)根據(jù)題意,討論與軸及直線相切時(shí),LQ取最小值和最大值,求出點(diǎn)橫坐標(biāo)即可;(3)根據(jù)題意將點(diǎn)轉(zhuǎn)化為直線,點(diǎn)理想值最大時(shí)點(diǎn)在上,分析圖形即可.【詳解】(1)①∵點(diǎn)在直線上,∴,∴點(diǎn)的“理想值”=-3,故答案為:﹣3.②當(dāng)點(diǎn)在與軸切點(diǎn)時(shí),點(diǎn)的“理想值”最小為0.當(dāng)點(diǎn)縱坐標(biāo)與橫坐標(biāo)比值最大時(shí),的“理想值”最大,此時(shí)直線與切于點(diǎn),設(shè)點(diǎn)Q(x,y),與x軸切于A,與OQ切于Q,∵C(,1),∴tan∠COA==,∴∠COA=30°,∵OQ、OA是的切線,∴∠QOA=2∠COA=60°,∴=tan∠QOA=tan60°=,∴點(diǎn)的“理想值”為,故答案為:.(2)設(shè)直線與軸、軸的交點(diǎn)分別為點(diǎn),點(diǎn),當(dāng)x=0時(shí),y=3,當(dāng)y=0時(shí),x+3=0,解得:x=,∴,.∴,,∴tan∠OAB=,∴.∵,∴①如圖,作直線.當(dāng)與軸相切時(shí),LQ=0,相應(yīng)的圓心滿足題意,其橫坐標(biāo)取到最大值.作軸于點(diǎn),∴,∴.∵的半徑為1,∴.∴,∴.∴.②如圖當(dāng)與直線相切時(shí),LQ=,相應(yīng)的圓心滿足題意,其橫坐標(biāo)取到最小值.作軸于點(diǎn),則.設(shè)直線與直線的交點(diǎn)為.∵直線中,k=,∴,∴,點(diǎn)F與Q重合,則.∵的半徑為1,∴.∴.∴,∴.∴.由①②可得,的取值范圍是.(3)∵M(jìn)(2,m),∴M點(diǎn)在直線x=2上,∵,∴LQ取最大值時(shí),=,∴作直線y=x,與x=2交于點(diǎn)N,當(dāng)M與ON和x軸同時(shí)相切時(shí),半徑r最大,根據(jù)題意作圖如下:M與ON相切于Q,與x軸相切于E,把x=2代入y=x得:y=4,∴NE=4,OE=2,ON==6,∴∠MQN=∠NEO=90°,又∵∠ONE=∠MNQ,∴,∴,即,解得:r=.∴最大半徑為.【點(diǎn)睛】本題是一次函數(shù)和圓的綜合題,主要考查了一次函數(shù)和圓的切線的性質(zhì),解答時(shí)要注意做好數(shù)形結(jié)合,根據(jù)圖形進(jìn)行分類討論.25、【問題】:詳見解析;【探究】:四邊形ABPE是平行四邊形,理由詳見解析;【應(yīng)用】:8.【解析】
(1)先根據(jù)平行線的性質(zhì)和等量代換得出∠1=∠3,再利用中線性質(zhì)得到BD=DC,證明△ABD≌△EDC,從而證明AB=DE(2)方法一:過點(diǎn)D作DN∥PE交直線CF于點(diǎn)N,由平行線性質(zhì)得出四邊形PDNE是平行四邊形,從而得到四邊形ABPE是平行四邊形.方法二:延長BP交直線CF于點(diǎn)N,根據(jù)平行線的性質(zhì)結(jié)合等量代換證明△ABP≌△EPN,從而證明四邊形ABPE是平行四邊形(3)延長BP交CF于H,根據(jù)平行四邊形的性質(zhì)結(jié)合三角形的面積公式求解即可.【詳解】證明:如圖①是的中線,(或證明四邊形ABDE是平行四邊形,從而得到)【探究】四邊形ABPE是平行四邊形.方法一:如圖②,證明:過點(diǎn)D作交直線于點(diǎn),∴四邊形是平行四邊形,∵由問題結(jié)論可得∴四邊形是平行四邊形.方法二:如圖③,證明:延長BP交直線CF于點(diǎn)N,∵是的中線,∴四邊形是平行四邊形.【應(yīng)用】如圖④,延長BP交CF于H.由上面可知,四邊形是平行四邊形,∴四邊形APHE是平行四邊形,,【點(diǎn)睛】此題重點(diǎn)考查學(xué)生對(duì)平行線性質(zhì),平行四邊形性質(zhì)的綜合應(yīng)用能力,熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.26、(1)8cm(2)24cm2(3)60cm2(4)17s【解析】
(1)根據(jù)題意得:動(dòng)點(diǎn)P在BC上運(yùn)動(dòng)的時(shí)間是4秒,又由動(dòng)點(diǎn)的速度,可得BC的長;(2)由(1)可得BC的長,又由AB=6cm,可以計(jì)算出△ABP的面積,計(jì)算可得a的值;(3)分析圖形可得,甲中的圖形面積等于AB×AF-CD×DE,根據(jù)圖象求出CD和DE的長,代入數(shù)據(jù)計(jì)算可得答案,(4)計(jì)算BC+CD+DE+EF+FA的長度,又由P的速度,計(jì)算可得b的值.【詳解】(1)由圖象知,當(dāng)t由0增大到4時(shí),點(diǎn)P由BC,∴BC==4×2=8(㎝);(2)a=S△ABC=×6×8=24(㎝2);(3)同理,由圖象知CD=4㎝,DE=6㎝,則EF=2㎝,AF=14㎝∴圖1中的圖象面積為6×14-4×6=60㎝2;(4)圖1中的多邊形的周長為(14+6)×2=40㎝b=(40-6)÷2=17秒.27、(1)y=﹣x2+2x+1;(2)P(2,1)或(,);(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0).【解析】
(1)根據(jù)拋物線的解析式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年行政單位合同業(yè)務(wù)流程創(chuàng)新與執(zhí)行監(jiān)督合同3篇
- 體育場館車庫租用合同
- 2024年網(wǎng)絡(luò)安全技術(shù)產(chǎn)品買賣框架協(xié)議范本3篇
- 制造業(yè)應(yīng)屆生聘用合同管理
- 鋼鐵廠地面施工協(xié)議
- 箱包行業(yè)節(jié)能減排資源管理辦法
- 木工工程合作協(xié)議
- 水果收購合同
- 城鎮(zhèn)公共場所安全風(fēng)險(xiǎn)評(píng)估規(guī)定
- 2024年船舶租賃運(yùn)輸合同
- 《格林童話》課外閱讀試題及答案
- 重型再生障礙性貧血造血干細(xì)胞移植治療課件
- 私立民辦高中學(xué)校項(xiàng)目投資計(jì)劃書
- 《電機(jī)與電氣控制技術(shù)》教學(xué)設(shè)計(jì)及授課計(jì)劃表
- “銷售技巧課件-讓你掌握銷售技巧”
- 2019北師大版高中英語選修一UNIT 2 單詞短語句子復(fù)習(xí)默寫單
- 房地產(chǎn)項(xiàng)目保密協(xié)議
- 汽車配件產(chǎn)業(yè)園項(xiàng)目商業(yè)計(jì)劃書
- 2023年云南省初中學(xué)業(yè)水平考試 物理
- 【安吉物流股份有限公司倉儲(chǔ)管理現(xiàn)狀及問題和優(yōu)化研究15000字(論文)】
- 2023年污水站設(shè)備維修 污水處理廠設(shè)備維護(hù)方案(五篇)
評(píng)論
0/150
提交評(píng)論