黑龍江省哈爾濱市南崗區(qū)2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第1頁(yè)
黑龍江省哈爾濱市南崗區(qū)2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第2頁(yè)
黑龍江省哈爾濱市南崗區(qū)2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第3頁(yè)
黑龍江省哈爾濱市南崗區(qū)2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第4頁(yè)
黑龍江省哈爾濱市南崗區(qū)2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

黑龍江省哈爾濱市南崗區(qū)2024屆中考押題數(shù)學(xué)預(yù)測(cè)卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.下列圖形中,既是中心對(duì)稱圖形又是軸對(duì)稱圖形的是()A. B. C. D.2.如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,則DE=()A.1 B.2 C.3 D.43.甲、乙兩輛汽車沿同一路線從A地前往B地,甲車以a千米/時(shí)的速度勻速行駛,途中出現(xiàn)故障后停車維修,修好后以2a千米/時(shí)的速度繼續(xù)行駛;乙車在甲車出發(fā)2小時(shí)后勻速前往B地,比甲車早30分鐘到達(dá).到達(dá)B地后,乙車按原速度返回A地,甲車以2a千米/時(shí)的速度返回A地.設(shè)甲、乙兩車與A地相距s(千米),甲車離開(kāi)A地的時(shí)間為t(小時(shí)),s與t之間的函數(shù)圖象如圖所示.下列說(shuō)法:①a=40;②甲車維修所用時(shí)間為1小時(shí);③兩車在途中第二次相遇時(shí)t的值為5.25;④當(dāng)t=3時(shí),兩車相距40千米,其中不正確的個(gè)數(shù)為()A.0個(gè) B.1個(gè) C.2個(gè) D.3個(gè)4.一元二次方程x2+kx﹣3=0的一個(gè)根是x=1,則另一個(gè)根是()A.3 B.﹣1 C.﹣3 D.﹣25.我市連續(xù)7天的最高氣溫為:28°,27°,30°,33°,30°,30°,32°,這組數(shù)據(jù)的平均數(shù)和眾數(shù)分別是()A.28°,30° B.30°,28° C.31°,30° D.30°,30°6.平面直角坐標(biāo)系中的點(diǎn)P(2﹣m,m)在第一象限,則m的取值范圍在數(shù)軸上可表示為()A. B.C. D.7.如圖所示的四張撲克牌背面完全相同,洗勻后背面朝上,則從中任意翻開(kāi)一張,牌面數(shù)字是3的倍數(shù)的概率為()A. B. C. D.8.二次函數(shù)y=a(x﹣m)2﹣n的圖象如圖,則一次函數(shù)y=mx+n的圖象經(jīng)過(guò)()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限9.根據(jù)文化和旅游部發(fā)布的《“五一”假日旅游指南》,今年“五一”期間居民出游意愿達(dá)36.6%,預(yù)計(jì)“五一”期間全固有望接待國(guó)內(nèi)游客1.49億人次,實(shí)現(xiàn)國(guó)內(nèi)旅游收入880億元.將880億用科學(xué)記數(shù)法表示應(yīng)為()A.8×107 B.880×108 C.8.8×109 D.8.8×101010.如圖是由長(zhǎng)方體和圓柱組成的幾何體,它的俯視圖是()A. B. C. D.11.如圖,在5×5的方格紙中將圖①中的圖形N平移到如圖②所示的位置,那么下列平移正確的是()A.先向下移動(dòng)1格,再向左移動(dòng)1格 B.先向下移動(dòng)1格,再向左移動(dòng)2格C.先向下移動(dòng)2格,再向左移動(dòng)1格 D.先向下移動(dòng)2格,再向左移動(dòng)2格12.設(shè)a,b是常數(shù),不等式的解集為,則關(guān)于x的不等式的解集是()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.若一元二次方程x2﹣2x﹣m=0無(wú)實(shí)數(shù)根,則一次函數(shù)y=(m+1)x+m﹣1的圖象不經(jīng)過(guò)第_____象限.14.計(jì)算(-2)×3+(-3)=_______________.15.如圖,在△ABC中,∠C=120°,AB=4cm,兩等圓⊙A與⊙B外切,則圖中兩個(gè)扇形的面積之和(即陰影部分)為cm2(結(jié)果保留π).16.如圖,AB是⊙O的直徑,CD是⊙O的弦,∠BAD=60°,則∠ACD=_____°.17.將三角形紙片()按如圖所示的方式折疊,使點(diǎn)落在邊上,記為點(diǎn),折痕為,已知,,若以點(diǎn),,為頂點(diǎn)的三角形與相似,則的長(zhǎng)度是______.18.(2017黑龍江省齊齊哈爾市)如圖,在等腰三角形紙片ABC中,AB=AC=10,BC=12,沿底邊BC上的高AD剪成兩個(gè)三角形,用這兩個(gè)三角形拼成平行四邊形,則這個(gè)平行四邊形較長(zhǎng)的對(duì)角線的長(zhǎng)是______.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)先化簡(jiǎn),再求值:,其中,a、b滿足.20.(6分)綜合與探究如圖,拋物線y=﹣與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,直線l經(jīng)過(guò)B,C兩點(diǎn),點(diǎn)M從點(diǎn)A出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),連接CM,將線段MC繞點(diǎn)M順時(shí)針旋轉(zhuǎn)90°得到線段MD,連接CD,BD.設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(t>0),請(qǐng)解答下列問(wèn)題:(1)求點(diǎn)A的坐標(biāo)與直線l的表達(dá)式;(2)①直接寫(xiě)出點(diǎn)D的坐標(biāo)(用含t的式子表示),并求點(diǎn)D落在直線l上時(shí)的t的值;②求點(diǎn)M運(yùn)動(dòng)的過(guò)程中線段CD長(zhǎng)度的最小值;(3)在點(diǎn)M運(yùn)動(dòng)的過(guò)程中,在直線l上是否存在點(diǎn)P,使得△BDP是等邊三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.21.(6分)Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O交AC邊于點(diǎn)D,E是邊BC的中點(diǎn),連接DE,OD.(1)如圖①,求∠ODE的大?。唬?)如圖②,連接OC交DE于點(diǎn)F,若OF=CF,求∠A的大?。?2.(8分)某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開(kāi)展形式多樣的陽(yáng)光體育活動(dòng).某中學(xué)就“學(xué)生體育活動(dòng)興趣愛(ài)好”的問(wèn)題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有______人,在扇形統(tǒng)計(jì)圖中,“乒乓球”的百分比為_(kāi)_____%,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有______人喜歡籃球項(xiàng)目.(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.(3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級(jí)參加校籃球隊(duì),請(qǐng)直接寫(xiě)出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.23.(8分)已知點(diǎn)O是正方形ABCD對(duì)角線BD的中點(diǎn).(1)如圖1,若點(diǎn)E是OD的中點(diǎn),點(diǎn)F是AB上一點(diǎn),且使得∠CEF=90°,過(guò)點(diǎn)E作ME∥AD,交AB于點(diǎn)M,交CD于點(diǎn)N.①∠AEM=∠FEM;②點(diǎn)F是AB的中點(diǎn);(2)如圖2,若點(diǎn)E是OD上一點(diǎn),點(diǎn)F是AB上一點(diǎn),且使,請(qǐng)判斷△EFC的形狀,并說(shuō)明理由;(3)如圖3,若E是OD上的動(dòng)點(diǎn)(不與O,D重合),連接CE,過(guò)E點(diǎn)作EF⊥CE,交AB于點(diǎn)F,當(dāng)時(shí),請(qǐng)猜想的值(請(qǐng)直接寫(xiě)出結(jié)論).24.(10分)如圖,在平面直角坐標(biāo)系xOy中,將拋物線y=x2平移,使平移后的拋物線經(jīng)過(guò)點(diǎn)A(–3,0)、B(1,0).(1)求平移后的拋物線的表達(dá)式.(2)設(shè)平移后的拋物線交y軸于點(diǎn)C,在平移后的拋物線的對(duì)稱軸上有一動(dòng)點(diǎn)P,當(dāng)BP與CP之和最小時(shí),P點(diǎn)坐標(biāo)是多少?(3)若y=x2與平移后的拋物線對(duì)稱軸交于D點(diǎn),那么,在平移后的拋物線的對(duì)稱軸上,是否存在一點(diǎn)M,使得以M、O、D為頂點(diǎn)的三角形△BOD相似?若存在,求點(diǎn)M坐標(biāo);若不存在,說(shuō)明理由.25.(10分)(1)計(jì)算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化簡(jiǎn),再求值:()+,其中a=﹣2+.26.(12分)在大課間活動(dòng)中,體育老師隨機(jī)抽取了七年級(jí)甲、乙兩班部分女學(xué)生進(jìn)行仰臥起坐的測(cè)試,并對(duì)成績(jī)進(jìn)行統(tǒng)計(jì)分析,繪制了頻數(shù)分布表和統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖表中的信息完成下列問(wèn)題:頻數(shù)分布表中a=,b=,并將統(tǒng)計(jì)圖補(bǔ)充完整;如果該校七年級(jí)共有女生180人,估計(jì)仰臥起坐能夠一分鐘完成30或30次以上的女學(xué)生有多少人?已知第一組中只有一個(gè)甲班學(xué)生,第四組中只有一個(gè)乙班學(xué)生,老師隨機(jī)從這兩個(gè)組中各選一名學(xué)生談心得體會(huì),則所選兩人正好都是甲班學(xué)生的概率是多少?27.(12分)計(jì)算:=_____.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】試題解析:A.是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;B.是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;C.既是中心對(duì)稱圖又是軸對(duì)稱圖形,故本選項(xiàng)正確;D.是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤.故選C.2、B【解析】

根據(jù)余角的性質(zhì),可得∠DCA與∠CBE的關(guān)系,根據(jù)AAS可得△ACD與△CBE的關(guān)系,根據(jù)全等三角形的性質(zhì),可得AD與CE的關(guān)系,根據(jù)線段的和差,可得答案.【詳解】∴∠ADC=∠BEC=90°.∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,∠DCA=∠CBE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CE=AD=3,CD=BE=1,DE=CE?CD=3?1=2,故答案選:B.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握全等三角形的判定與性質(zhì).3、A【解析】解:①由函數(shù)圖象,得a=120÷3=40,故①正確,②由題意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲車維修的時(shí)間為1小時(shí);故②正確,③如圖:∵甲車維修的時(shí)間是1小時(shí),∴B(4,120).∵乙在甲出發(fā)2小時(shí)后勻速前往B地,比甲早30分鐘到達(dá).∴E(5,240).∴乙行駛的速度為:240÷3=80,∴乙返回的時(shí)間為:240÷80=3,∴F(8,0).設(shè)BC的解析式為y1=k1t+b1,EF的解析式為y2=k2t+b2,由圖象得,,,解得,,∴y1=80t﹣200,y2=﹣80t+640,當(dāng)y1=y2時(shí),80t﹣200=﹣80t+640,t=5.2.∴兩車在途中第二次相遇時(shí)t的值為5.2小時(shí),故弄③正確,④當(dāng)t=3時(shí),甲車行的路程為:120km,乙車行的路程為:80×(3﹣2)=80km,∴兩車相距的路程為:120﹣80=40千米,故④正確,故選A.4、C【解析】試題分析:根據(jù)根與系數(shù)的關(guān)系可得出兩根的積,即可求得方程的另一根.設(shè)m、n是方程x2+kx﹣3=0的兩個(gè)實(shí)數(shù)根,且m=x=1;則有:mn=﹣3,即n=﹣3;故選C.【考點(diǎn)】根與系數(shù)的關(guān)系;一元二次方程的解.5、D【解析】試題分析:數(shù)據(jù)28°,27°,30°,33°,30°,30°,32°的平均數(shù)是(28+27+30+33+30+30+32)÷7=30,30出現(xiàn)了3次,出現(xiàn)的次數(shù)最多,則眾數(shù)是30;故選D.考點(diǎn):眾數(shù);算術(shù)平均數(shù).6、B【解析】

根據(jù)第二象限中點(diǎn)的特征可得:,解得:.在數(shù)軸上表示為:故選B.考點(diǎn):(1)、不等式組;(2)、第一象限中點(diǎn)的特征7、C【解析】

根據(jù)題意確定所有情況的數(shù)目,再確定符合條件的數(shù)目,根據(jù)概率的計(jì)算公式即可.【詳解】解:由題意可知,共有4種情況,其中是3的倍數(shù)的有6和9,∴是3的倍數(shù)的概率,故答案為:C.【點(diǎn)睛】本題考查了概率的計(jì)算,解題的關(guān)鍵是熟知概率的計(jì)算公式.8、A【解析】

由拋物線的頂點(diǎn)坐標(biāo)在第四象限可得出m>0,n>0,再利用一次函數(shù)圖象與系數(shù)的關(guān)系,即可得出一次函數(shù)y=mx+n的圖象經(jīng)過(guò)第一、二、三象限.【詳解】解:觀察函數(shù)圖象,可知:m>0,n>0,∴一次函數(shù)y=mx+n的圖象經(jīng)過(guò)第一、二、三象限.故選A.【點(diǎn)睛】本題考查了二次函數(shù)的圖象以及一次函數(shù)圖象與系數(shù)的關(guān)系,牢記“k>0,b>0?y=kx+b的圖象在一、二、三象限”是解題的關(guān)鍵.9、D【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>10時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】880億=88000000000=8.8×1010,

故選D.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.10、A【解析】分析:根據(jù)從上邊看得到的圖形是俯視圖,可得答案.詳解:從上邊看外面是正方形,里面是沒(méi)有圓心的圓,故選A.點(diǎn)睛:本題考查了簡(jiǎn)單組合體的三視圖,從上邊看得到的圖形是俯視圖.11、C【解析】

根據(jù)題意,結(jié)合圖形,由平移的概念求解.【詳解】由方格可知,在5×5方格紙中將圖①中的圖形N平移后的位置如圖②所示,那么下面平移中正確的是:先向下移動(dòng)2格,再向左移動(dòng)1格,故選C.【點(diǎn)睛】本題考查平移的基本概念及平移規(guī)律,是比較簡(jiǎn)單的幾何圖形變換.關(guān)鍵是要觀察比較平移前后物體的位置.12、C【解析】

根據(jù)不等式的解集為x<即可判斷a,b的符號(hào),則根據(jù)a,b的符號(hào),即可解不等式bx-a<0【詳解】解不等式,移項(xiàng)得:∵解集為x<∴,且a<0∴b=-5a>0,解不等式,移項(xiàng)得:bx>a兩邊同時(shí)除以b得:x>,即x>-故選C【點(diǎn)睛】此題考查解一元一次不等式,掌握運(yùn)算法則是解題關(guān)鍵二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、一【解析】∵一元二次方程x2-2x-m=0無(wú)實(shí)數(shù)根,

∴△=4+4m<0,解得m<-1,

∴m+1<0,m-1<0,

∴一次函數(shù)y=(m+1)x+m-1的圖象經(jīng)過(guò)二三四象限,不經(jīng)過(guò)第一象限.

故答案是:一.14、-9【解析】

根據(jù)有理數(shù)的計(jì)算即可求解.【詳解】(-2)×3+(-3)=-6-3=-9【點(diǎn)睛】此題主要考查有理數(shù)的混合運(yùn)算,解題的關(guān)鍵是熟知有理數(shù)的運(yùn)算法則.15、.【解析】

圖中陰影部分的面積就是兩個(gè)扇形的面積,圓A,B的半徑為2cm,則根據(jù)扇形面積公式可得陰影面積.【詳解】(cm2).故答案為.考點(diǎn):1、扇形的面積公式;2、兩圓相外切的性質(zhì).16、1【解析】

連接BD.根據(jù)圓周角定理可得.【詳解】解:如圖,連接BD.∵AB是⊙O的直徑,∴∠ADB=90°,∴∠B=90°﹣∠DAB=1°,∴∠ACD=∠B=1°,故答案為1.【點(diǎn)睛】考核知識(shí)點(diǎn):圓周角定理.理解定義是關(guān)鍵.17、或2【解析】

由折疊性質(zhì)可知B’F=BF,△B’FC與△ABC相似,有兩種情況,分別對(duì)兩種情況進(jìn)行討論,設(shè)出B’F=BF=x,列出比例式方程解方程即可得到結(jié)果.【詳解】由折疊性質(zhì)可知B’F=BF,設(shè)B’F=BF=x,故CF=4-x當(dāng)△B’FC∽△ABC,有,得到方程,解得x=,故BF=;當(dāng)△FB’C∽△ABC,有,得到方程,解得x=2,故BF=2;綜上BF的長(zhǎng)度可以為或2.【點(diǎn)睛】本題主要考查相似三角形性質(zhì),解題關(guān)鍵在于能夠?qū)蓚€(gè)相似三角形進(jìn)行分類討論.18、10,,.【解析】解:如圖,過(guò)點(diǎn)A作AD⊥BC于點(diǎn)D,∵△ABC邊AB=AC=10,BC=12,∴BD=DC=6,∴AD=8,如圖①所示:可得四邊形ACBD是矩形,則其對(duì)角線長(zhǎng)為:10;如圖②所示:AD=8,連接BC,過(guò)點(diǎn)C作CE⊥BD于點(diǎn)E,則EC=8,BE=2BD=12,則BC=;如圖③所示:BD=6,由題意可得:AE=6,EC=2BE=16,故AC==.故答案為10,,.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、【解析】

先根據(jù)分式混合運(yùn)算順序和運(yùn)算法則化簡(jiǎn)原式,再解方程組求得a、b的值,繼而代入計(jì)算可得.【詳解】原式=,=,=,解方程組得,所以原式=.【點(diǎn)睛】本題主要考查分式的化簡(jiǎn)求值和解二元一次方程組,解題的關(guān)鍵是熟練掌握分式混合運(yùn)算順序和運(yùn)算法則.20、(1)A(﹣3,0),y=﹣x+;(2)①D(t﹣3+,t﹣3),②CD最小值為;(3)P(2,﹣),理由見(jiàn)解析.【解析】

(1)當(dāng)y=0時(shí),﹣=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系數(shù)法可求直線l的表達(dá)式;(2)分當(dāng)點(diǎn)M在AO上運(yùn)動(dòng)時(shí),當(dāng)點(diǎn)M在OB上運(yùn)動(dòng)時(shí),進(jìn)行討論可求D點(diǎn)坐標(biāo),將D點(diǎn)坐標(biāo)代入直線解析式求得t的值;線段CD是等腰直角三角形CMD斜邊,若CD最小,則CM最小,根據(jù)勾股定理可求點(diǎn)M運(yùn)動(dòng)的過(guò)程中線段CD長(zhǎng)度的最小值;(3)分當(dāng)點(diǎn)M在AO上運(yùn)動(dòng)時(shí),即0<t<3時(shí),當(dāng)點(diǎn)M在OB上運(yùn)動(dòng)時(shí),即3≤t≤4時(shí),進(jìn)行討論可求P點(diǎn)坐標(biāo).【詳解】(1)當(dāng)y=0時(shí),﹣=0,解得x1=1,x2=﹣3,∵點(diǎn)A在點(diǎn)B的左側(cè),∴A(﹣3,0),B(1,0),由解析式得C(0,),設(shè)直線l的表達(dá)式為y=kx+b,將B,C兩點(diǎn)坐標(biāo)代入得b=mk﹣,故直線l的表達(dá)式為y=﹣x+;(2)當(dāng)點(diǎn)M在AO上運(yùn)動(dòng)時(shí),如圖:由題意可知AM=t,OM=3﹣t,MC⊥MD,過(guò)點(diǎn)D作x軸的垂線垂足為N,∠DMN+∠CMO=90°,∠CMO+∠MCO=90°,∴∠MCO=∠DMN,在△MCO與△DMN中,,∴△MCO≌△DMN,∴MN=OC=,DN=OM=3﹣t,∴D(t﹣3+,t﹣3);同理,當(dāng)點(diǎn)M在OB上運(yùn)動(dòng)時(shí),如圖,OM=t﹣3,△MCO≌△DMN,MN=OC=,ON=t﹣3+,DN=OM=t﹣3,∴D(t﹣3+,t﹣3).綜上得,D(t﹣3+,t﹣3).將D點(diǎn)坐標(biāo)代入直線解析式得t=6﹣2,線段CD是等腰直角三角形CMD斜邊,若CD最小,則CM最小,∵M(jìn)在AB上運(yùn)動(dòng),∴當(dāng)CM⊥AB時(shí),CM最短,CD最短,即CM=CO=,根據(jù)勾股定理得CD最?。唬?)當(dāng)點(diǎn)M在AO上運(yùn)動(dòng)時(shí),如圖,即0<t<3時(shí),∵tan∠CBO==,∴∠CBO=60°,∵△BDP是等邊三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=3﹣t,AN=t+,NB=4﹣t﹣,tan∠NBO=,=,解得t=3﹣,經(jīng)檢驗(yàn)t=3﹣是此方程的解,過(guò)點(diǎn)P作x軸的垂線交于點(diǎn)Q,易知△PQB≌△DNB,∴BQ=BN=4﹣t﹣=1,PQ=,OQ=2,P(2,﹣);同理,當(dāng)點(diǎn)M在OB上運(yùn)動(dòng)時(shí),即3≤t≤4時(shí),∵△BDP是等邊三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=t﹣3,NB=t﹣3+﹣1=t﹣4+,tan∠NBD=,=,解得t=3﹣,經(jīng)檢驗(yàn)t=3﹣是此方程的解,t=3﹣(不符合題意,舍).故P(2,﹣).【點(diǎn)睛】考查了二次函數(shù)綜合題,涉及的知識(shí)點(diǎn)有:待定系數(shù)法,勾股定理,等腰直角三角形的性質(zhì),等邊三角形的性質(zhì),三角函數(shù),分類思想的運(yùn)用,方程思想的運(yùn)用,綜合性較強(qiáng),有一定的難度.21、(1)∠ODE=90°;(2)∠A=45°.【解析】分析:(Ⅰ)連接OE,BD,利用全等三角形的判定和性質(zhì)解答即可;(Ⅱ)利用中位線的判定和定理解答即可.詳解:(Ⅰ)連接OE,BD.∵AB是⊙O的直徑,∴∠ADB=90°,∴∠CDB=90°.∵E點(diǎn)是BC的中點(diǎn),∴DE=BC=BE.∵OD=OB,OE=OE,∴△ODE≌△OBE,∴∠ODE=∠OBE.∵∠ABC=90°,∴∠ODE=90°;(Ⅱ)∵CF=OF,CE=EB,∴FE是△COB的中位線,∴FE∥OB,∴∠AOD=∠ODE,由(Ⅰ)得∠ODE=90°,∴∠AOD=90°.∵OA=OD,∴∠A=∠ADO=.點(diǎn)睛:本題考查了圓周角定理,關(guān)鍵是根據(jù)學(xué)生對(duì)全等三角形的判定方法及切線的判定等知識(shí)的掌握情況解答.22、(1)5,20,80;(2)圖見(jiàn)解析;(3).【解析】【分析】(1)根據(jù)喜歡跳繩的人數(shù)以及所占的比例求得總?cè)藬?shù),然后用總?cè)藬?shù)減去喜歡跳繩、乒乓球、其它的人數(shù)即可得;(2)用乒乓球的人數(shù)除以總?cè)藬?shù)即可得;(3)用800乘以喜歡籃球人數(shù)所占的比例即可得;(4)根據(jù)(1)中求得的喜歡籃球的人數(shù)即可補(bǔ)全條形圖;(5)畫(huà)樹(shù)狀圖可得所有可能的情況,根據(jù)樹(shù)狀圖求得2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的結(jié)果,根據(jù)概率公式進(jìn)行計(jì)算即可.【詳解】(1)調(diào)查的總?cè)藬?shù)為20÷40%=50(人),喜歡籃球項(xiàng)目的同學(xué)的人數(shù)=50﹣20﹣10﹣15=5(人);(2)“乒乓球”的百分比==20%;(3)800×=80,所以估計(jì)全校學(xué)生中有80人喜歡籃球項(xiàng)目;(4)如圖所示,(5)畫(huà)樹(shù)狀圖為:共有20種等可能的結(jié)果數(shù),其中所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的結(jié)果數(shù)為12,所以所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率=.23、(1)①證明見(jiàn)解析;②證明見(jiàn)解析;(2)△EFC是等腰直角三角形.理由見(jiàn)解析;(3).【解析】試題分析:(1)①過(guò)點(diǎn)E作EG⊥BC,垂足為G,根據(jù)ASA證明△CEG≌△FEM得CE=FE,再根據(jù)SAS證明△ABE≌△CBE得AE=CE,在△AEF中根據(jù)等腰三角形“三線合一”即可證明結(jié)論成立;②設(shè)AM=x,則AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,從而AF=AB,得到點(diǎn)F是AB的中點(diǎn).;(2)過(guò)點(diǎn)E作EM⊥AB,垂足為M,延長(zhǎng)ME交CD于點(diǎn)N,過(guò)點(diǎn)E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AME≌△FME(SAS),從而可得△EFC是等腰直角三角形.(3)方法同第(2)小題.過(guò)點(diǎn)E作EM⊥AB,垂足為M,延長(zhǎng)ME交CD于點(diǎn)N,過(guò)點(diǎn)E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AEM≌△FEM(ASA),得AM=FM,設(shè)AM=x,則AF=2x,DN=x,DE=x,BD=x,AB=x,=2x:x=.試題解析:(1)①過(guò)點(diǎn)E作EG⊥BC,垂足為G,則四邊形MBGE為正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四邊形ABCD為正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB,∴∠AEM=∠FEM.②設(shè)AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四邊形AMND為矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴點(diǎn)F是AB的中點(diǎn).(2)△EFC是等腰直角三角形.過(guò)點(diǎn)E作EM⊥AB,垂足為M,延長(zhǎng)ME交CD于點(diǎn)N,過(guò)點(diǎn)E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),∴∠AEM=∠CEG,設(shè)AM=x,則DN=AM=x,DE=x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.(3)過(guò)點(diǎn)E作EM⊥AB,垂足為M,延長(zhǎng)ME交CD于點(diǎn)N,過(guò)點(diǎn)E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),∴∠AEM=∠CEG.∵EF⊥CE,∴∠FEC=90°,∴∠CEG+∠FEG=90°.又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG=∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM(ASA),∴AM=FM.設(shè)AM=x,則AF=2x,DN=x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.考點(diǎn):四邊形綜合題.24、(1)y=x2+2x﹣3;(2)點(diǎn)P坐標(biāo)為(﹣1,﹣2);(3)點(diǎn)M坐標(biāo)為(﹣1,3)或(﹣1,2).【解析】

(1)設(shè)平移后拋物線的表達(dá)式為y=a(x+3)(x-1).由題意可知平后拋物線的二次項(xiàng)系數(shù)與原拋物線的二次項(xiàng)系數(shù)相同,從而可求得a的值,于是可求得平移后拋物線的表達(dá)式;(2)先根據(jù)平移后拋物線解析式求得其對(duì)稱軸,從而得出點(diǎn)C關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)C′坐標(biāo),連接BC′,與對(duì)稱軸交點(diǎn)即為所求點(diǎn)P,再求得直線BC′解析式,聯(lián)立方程組求解可得;(3)先求得點(diǎn)D的坐標(biāo),由點(diǎn)O、B、E、D的坐標(biāo)可求得OB、OE、DE、BD的長(zhǎng),從而可得到△EDO為等腰三角直角三角形,從而可得到∠MDO=∠BOD=135°,故此當(dāng)或時(shí),以M、O、D為頂點(diǎn)的三角形與△BOD相似.由比例式可求得MD的長(zhǎng),于是可求得點(diǎn)M的坐標(biāo).【詳解】(1)設(shè)平移后拋物線的表達(dá)式為y=a(x+3)(x﹣1),∵由平移的性質(zhì)可知原拋物線與平移后拋物線的開(kāi)口大小與方向都相同,∴平移后拋物線的二次項(xiàng)系數(shù)與原拋物線的二次項(xiàng)系數(shù)相同,∴平移后拋物線的二次項(xiàng)系數(shù)為1,即a=1,∴平移后拋物線的表達(dá)式為y=(x+3)(x﹣1),整理得:y=x2+2x﹣3;

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論