




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
廣西壯族自治區(qū)柳州市2024屆中考二模數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,長度為10m的木條,從兩邊各截取長度為xm的木條,若得到的三根木條能組成三角形,則x可以取的值為()A.2m B.m C.3m D.6m2.如圖,若干個(gè)全等的正五邊形排成環(huán)狀,圖中所示的是前3個(gè)正五邊形,要完成這一圓環(huán)還需正五邊形的個(gè)數(shù)為()A.10 B.9 C.8 D.73.如圖,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,則BC的長度為()A. B. C.3 D.4.在一個(gè)不透明的袋中裝有10個(gè)只有顏色不同的球,其中5個(gè)紅球、3個(gè)黃球和2個(gè)白球.從袋中任意摸出一個(gè)球,是白球的概率為(
)A. B. C. D.5.已知拋物線y=ax2+bx+c與x軸交于(x1,0)、(x2,0)兩點(diǎn),且0<x1<1,1<x2<2與y軸交于(0,-2),下列結(jié)論:①2a+b>1;②a+b<2;③3a+b>0;④a<-1,其中正確結(jié)論的個(gè)數(shù)為()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)6.一組數(shù)據(jù)3、2、1、2、2的眾數(shù),中位數(shù),方差分別是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.27.如圖,O為坐標(biāo)原點(diǎn),四邊彤OACB是菱形,OB在x軸的正半軸上,sin∠AOB=45,反比例函數(shù)yA.10B.9C.8D.68.為了鍛煉學(xué)生身體素質(zhì),訓(xùn)練定向越野技能,某校在一公園內(nèi)舉行定向越野挑戰(zhàn)賽.路線圖如圖1所示,點(diǎn)E為矩形ABCD邊AD的中點(diǎn),在矩形ABCD的四個(gè)頂點(diǎn)處都有定位儀,可監(jiān)測運(yùn)動員的越野進(jìn)程,其中一位運(yùn)動員P從點(diǎn)B出發(fā),沿著B﹣E﹣D的路線勻速行進(jìn),到達(dá)點(diǎn)D.設(shè)運(yùn)動員P的運(yùn)動時(shí)間為t,到監(jiān)測點(diǎn)的距離為y.現(xiàn)有y與t的函數(shù)關(guān)系的圖象大致如圖2所示,則這一信息的來源是()A.監(jiān)測點(diǎn)A B.監(jiān)測點(diǎn)B C.監(jiān)測點(diǎn)C D.監(jiān)測點(diǎn)D9.如圖,直線l是一次函數(shù)y=kx+b的圖象,若點(diǎn)A(3,m)在直線l上,則m的值是()A.﹣5 B. C. D.710.如圖,已知△ABC,AB=AC,將△ABC沿邊BC翻轉(zhuǎn),得到的△DBC與原△ABC拼成四邊形ABDC,則能直接判定四邊形ABDC是菱形的依據(jù)是()A.四條邊相等的四邊形是菱形 B.一組鄰邊相等的平行四邊形是菱形C.對角線互相垂直的平行四邊形是菱形 D.對角線互相垂直平分的四邊形是菱形二、填空題(共7小題,每小題3分,滿分21分)11.如圖,點(diǎn)A,B,C在⊙O上,∠OBC=18°,則∠A=_______________________.12.如圖,在△ABC中,AD、BE分別是邊BC、AC上的中線,AB=AC=5,cos∠C=,那么GE=_______.13.某廣場要做一個(gè)由若干盆花組成的形如正六邊形的花壇,每條邊(包括兩個(gè)頂點(diǎn))有n(n>1)盆花,設(shè)這個(gè)花壇邊上的花盆的總數(shù)為S,請觀察圖中的規(guī)律:按上規(guī)律推斷,S與n的關(guān)系是________________________________.14.如圖,在平面直角坐標(biāo)系中,直線y=﹣3x+3與x軸、y軸分別交于A、B兩點(diǎn),以AB為邊在第一象限作正方形,點(diǎn)D恰好在雙曲線上,則k值為_____.15.若是關(guān)于的完全平方式,則__________.16.把多項(xiàng)式a3-2a2+a分解因式的結(jié)果是17.拋物線y=x2﹣2x+3的對稱軸是直線_____.三、解答題(共7小題,滿分69分)18.(10分)已知關(guān)于的方程有兩個(gè)實(shí)數(shù)根.求的取值范圍;若,求的值;19.(5分)為做好防汛工作,防汛指揮部決定對某水庫的水壩進(jìn)行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來的高度BC.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)20.(8分)在一個(gè)不透明的布袋里裝有4個(gè)標(biāo)有1、2、3、4的小球,它們的形狀、大小完全相同,李強(qiáng)從布袋中隨機(jī)取出一個(gè)小球,記下數(shù)字為x,王芳在剩下的3個(gè)小球中隨機(jī)取出一個(gè)小球,記下數(shù)字為y,這樣確定了點(diǎn)M的坐標(biāo)畫樹狀圖列表,寫出點(diǎn)M所有可能的坐標(biāo);求點(diǎn)在函數(shù)的圖象上的概率.21.(10分)如圖,已知AB是⊙O的直徑,點(diǎn)C、D在⊙O上,點(diǎn)E在⊙O外,∠EAC=∠D=60°.求∠ABC的度數(shù);求證:AE是⊙O的切線;當(dāng)BC=4時(shí),求劣弧AC的長.22.(10分)如圖,小明的家在某住宅樓AB的最頂層(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道這座建筑物的高度,于是在自家陽臺的A處測得建筑物CD的底部C的俯角是43°,頂部D的仰角是25°,他又測得兩建筑物之間的距離BC是28米,請你幫助小明求出建筑物CD的高度(精確到1米).23.(12分)小張騎自行車勻速從甲地到乙地,在途中因故停留了一段時(shí)間后,仍按原速騎行,小李騎摩托車比小張晚出發(fā)一段時(shí)間,以800米/分的速度勻速從乙地到甲地,兩人距離乙地的路程y(米)與小張出發(fā)后的時(shí)間x(分)之間的函數(shù)圖象如圖所示.求小張騎自行車的速度;求小張停留后再出發(fā)時(shí)y與x之間的函數(shù)表達(dá)式;求小張與小李相遇時(shí)x的值.24.(14分)如圖,在△ABC中,ABAC,AE是∠BAC的平分線,∠ABC的平分線BM交AE于點(diǎn)M,點(diǎn)O在AB上,以點(diǎn)O為圓心,OB的長為半徑的圓經(jīng)過點(diǎn)M,交BC于點(diǎn)G,交AB于點(diǎn)F.(1)求證:AE為⊙O的切線;(2)當(dāng)BC=4,AC=6時(shí),求⊙O的半徑;(3)在(2)的條件下,求線段BG的長.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】
依據(jù)題意,三根木條的長度分別為xm,xm,(10-2x)m,在根據(jù)三角形的三邊關(guān)系即可判斷.【詳解】解:由題意可知,三根木條的長度分別為xm,xm,(10-2x)m,∵三根木條要組成三角形,∴x-x<10-2x<x+x,解得:.故選擇C.【點(diǎn)睛】本題主要考察了三角形三邊的關(guān)系,關(guān)鍵是掌握三角形兩邊之和大于第三邊,兩邊之差的絕對值小于第三邊.2、D【解析】分析:先根據(jù)多邊形的內(nèi)角和公式(n﹣2)?180°求出正五邊形的每一個(gè)內(nèi)角的度數(shù),再延長五邊形的兩邊相交于一點(diǎn),并根據(jù)四邊形的內(nèi)角和求出這個(gè)角的度數(shù),然后根據(jù)周角等于360°求出完成這一圓環(huán)需要的正五邊形的個(gè)數(shù),然后減去3即可得解.詳解:∵五邊形的內(nèi)角和為(5﹣2)?180°=540°,∴正五邊形的每一個(gè)內(nèi)角為540°÷5=18°,如圖,延長正五邊形的兩邊相交于點(diǎn)O,則∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已經(jīng)有3個(gè)五邊形,∴1﹣3=7,即完成這一圓環(huán)還需7個(gè)五邊形.故選D.點(diǎn)睛:本題考查了多邊形的內(nèi)角和公式,延長正五邊形的兩邊相交于一點(diǎn),并求出這個(gè)角的度數(shù)是解題的關(guān)鍵,注意需要減去已有的3個(gè)正五邊形.3、A【解析】∵∠AED=∠B,∠A=∠A
∴△ADE∽△ACB∴,∵DE=6,AB=10,AE=8,∴,解得BC=.故選A.4、D【解析】
一個(gè)不透明的袋中裝有10個(gè)只有顏色不同的球,其中5個(gè)紅球、3個(gè)黃球和2個(gè)白球.從袋中任意摸出一個(gè)球,共有10種等可能的結(jié)果,其中摸出白球的所有等可能結(jié)果共有2種,根據(jù)概率公式即可得出答案.【詳解】根據(jù)題意:從袋中任意摸出一個(gè)球,是白球的概率為==.故答案為D【點(diǎn)睛】此題主要考查了概率的求法,如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.5、A【解析】
如圖,且圖像與y軸交于點(diǎn),可知該拋物線的開口向下,即,①當(dāng)時(shí),故①錯(cuò)誤.②由圖像可知,當(dāng)時(shí),∴∴故②錯(cuò)誤.③∵∴,又∵,∴,∴,∴,故③錯(cuò)誤;④∵,,又∵,∴.故④正確.故答案選A.【點(diǎn)睛】本題考查二次函數(shù)系數(shù)符號的確定由拋物線的開口方向、對稱軸和拋物線與坐標(biāo)軸的交點(diǎn)確定.6、B【解析】試題解析:從小到大排列此數(shù)據(jù)為:1,2,2,2,3;數(shù)據(jù)2出現(xiàn)了三次最多為眾數(shù),2處在第3位為中位數(shù).平均數(shù)為(3+2+1+2+2)÷5=2,方差為[(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位數(shù)是2,眾數(shù)是2,方差為0.1.故選B.7、A【解析】過點(diǎn)A作AM⊥x軸于點(diǎn)M,過點(diǎn)F作FN⊥x軸于點(diǎn)N,設(shè)OA=a,BF=b,通過解直角三角形分別找出點(diǎn)A、F的坐標(biāo),結(jié)合反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出a、b的值,通過分割圖形求面積,最終找出△AOF的面積等于梯形AMNF的面積,利用梯形的面積公式即可得出結(jié)論.解:過點(diǎn)A作AM⊥x軸于點(diǎn)M,過點(diǎn)F作FN⊥x軸于點(diǎn)N,如圖所示.設(shè)OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=45∴AM=OA?sin∠AOB=45a,OM=OA2∴點(diǎn)A的坐標(biāo)為(35a,4∵點(diǎn)A在反比例函數(shù)y=12x∴35a×45a=1225解得:a=5,或a=﹣5(舍去).∴AM=8,OM=1.∵四邊形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=45∴FN=BF?sin∠FBN=45b,BN=BF2∴點(diǎn)F的坐標(biāo)為(10+35b,4∵點(diǎn)F在反比例函數(shù)y=12x∴(10+35b)×4S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10故選A.“點(diǎn)睛”本題主要考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是找出S△AOF=12S菱形OBCA8、C【解析】試題解析:、由監(jiān)測點(diǎn)監(jiān)測時(shí),函數(shù)值隨的增大先減少再增大.故選項(xiàng)錯(cuò)誤;、由監(jiān)測點(diǎn)監(jiān)測時(shí),函數(shù)值隨的增大而增大,故選項(xiàng)錯(cuò)誤;、由監(jiān)測點(diǎn)監(jiān)測時(shí),函數(shù)值隨的增大先減小再增大,然后再減小,選項(xiàng)正確;、由監(jiān)測點(diǎn)監(jiān)測時(shí),函數(shù)值隨的增大而減小,選項(xiàng)錯(cuò)誤.故選.9、C【解析】
把(-2,0)和(0,1)代入y=kx+b,求出解析式,再將A(3,m)代入,可求得m.【詳解】把(-2,0)和(0,1)代入y=kx+b,得,解得所以,一次函數(shù)解析式y(tǒng)=x+1,再將A(3,m)代入,得m=×3+1=.故選C.【點(diǎn)睛】本題考核知識點(diǎn):考查了待定系數(shù)法求一次函數(shù)的解析式,根據(jù)解析式再求函數(shù)值.10、A【解析】
根據(jù)翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根據(jù)菱形的判定推出即可.【詳解】∵
將
△ABC
延底邊
BC
翻折得到
△DBC
,∴AB=BD
,
AC=CD
,∵AB=AC
,∴AB=BD=CD=AC
,∴
四邊形
ABDC
是菱形;故選A.【點(diǎn)睛】本題考查了菱形的判定方法:四邊都相等的四邊形是菱形;對角線互相垂直的平行四邊形是菱形;有一組鄰邊相等的平行四邊形是菱形.二、填空題(共7小題,每小題3分,滿分21分)11、72°.【解析】
解:∵OB=OC,∠OBC=18°,∴∠BCO=∠OBC=18°,∴∠BOC=180°﹣2∠OBC=180°﹣2×18°=144°,∴∠A=∠BOC=×144°=72°.故答案為72°.【點(diǎn)睛】本題考查圓周角定理,掌握同弧所對的圓周角是圓心角的一半是本題的解題關(guān)鍵.12、【解析】
過點(diǎn)E作EF⊥BC交BC于點(diǎn)F,分別求得AD=3,BD=CD=4,EF=,DF=2,BF=6,再結(jié)合△BGD∽△BEF即可.【詳解】過點(diǎn)E作EF⊥BC交BC于點(diǎn)F.∵AB=AC,AD為BC的中線∴AD⊥BC∴EF為△ADC的中位線.又∵cos∠C=,AB=AC=5,∴AD=3,BD=CD=4,EF=,DF=2∴BF=6∴在Rt△BEF中BE==,又∵△BGD∽△BEF∴,即BG=.GE=BE-BG=故答案為.【點(diǎn)睛】本題考查的知識點(diǎn)是三角形的相似,解題的關(guān)鍵是熟練的掌握三角形的相似.13、S=1n-1【解析】觀察可得,n=2時(shí),S=1;
n=3時(shí),S=1+(3-2)×1=12;
n=4時(shí),S=1+(4-2)×1=18;
…;
所以,S與n的關(guān)系是:S=1+(n-2)×1=1n-1.
故答案為S=1n-1.【點(diǎn)睛】本題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.14、1【解析】作DH⊥x軸于H,如圖,
當(dāng)y=0時(shí),-3x+3=0,解得x=1,則A(1,0),
當(dāng)x=0時(shí),y=-3x+3=3,則B(0,3),
∵四邊形ABCD為正方形,
∴AB=AD,∠BAD=90°,
∴∠BAO+∠DAH=90°,
而∠BAO+∠ABO=90°,
∴∠ABO=∠DAH,
在△ABO和△DAH中∴△ABO≌△DAH,
∴AH=OB=3,DH=OA=1,
∴D點(diǎn)坐標(biāo)為(1,1),
∵頂點(diǎn)D恰好落在雙曲線y=上,
∴a=1×1=1.故答案是:1.15、1或-1【解析】【分析】直接利用完全平方公式的定義得出2(m-3)=±8,進(jìn)而求出答案.詳解:∵x2+2(m-3)x+16是關(guān)于x的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案為-1或1.點(diǎn)睛:此題主要考查了完全平方公式,正確掌握完全平方公式的基本形式是解題關(guān)鍵.16、.【解析】要將一個(gè)多項(xiàng)式分解因式的一般步驟是首先看各項(xiàng)有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續(xù)分解因式.因此,.17、x=1【解析】
把解析式化為頂點(diǎn)式可求得答案.【詳解】解:∵y=x2-2x+3=(x-1)2+2,∴對稱軸是直線x=1,故答案為x=1.【點(diǎn)睛】本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點(diǎn)式是解題的關(guān)鍵,即在y=a(x-h)2+k中,對稱軸為x=h,頂點(diǎn)坐標(biāo)為(h,k).三、解答題(共7小題,滿分69分)18、(1);(2)k=-3【解析】
(1)依題意得△≥0,即[-2(k-1)]2-4k2≥0;(2)依題意x1+x2=2(k-1),x1·x2=k2以下分兩種情況討論:①當(dāng)x1+x2≥0時(shí),則有x1+x2=x1·x2-1,即2(k-1)=k2-1;②當(dāng)x1+x2<0時(shí),則有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1);【詳解】解:(1)依題意得△≥0,即[-2(k-1)]2-4k2≥0解得(2)依題意x1+x2=2(k-1),x1·x2=k2以下分兩種情況討論:①當(dāng)x1+x2≥0時(shí),則有x1+x2=x1·x2-1,即2(k-1)=k2-1解得k1=k2=1∵∴k1=k2=1不合題意,舍去②當(dāng)x1+x2<0時(shí),則有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1)解得k1=1,k2=-3∵∴k=-3綜合①、②可知k=-3【點(diǎn)睛】一元二次方程根與系數(shù)關(guān)系,根判別式.19、水壩原來的高度為12米【解析】試題分析:設(shè)BC=x米,用x表示出AB的長,利用坡度的定義得到BD=BE,進(jìn)而列出x的方程,求出x的值即可.試題解析:設(shè)BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈=,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+,解得x=12,即BC=12,答:水壩原來的高度為12米..考點(diǎn):解直角三角形的應(yīng)用,坡度.20、見解析;.【解析】
(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果;(2)找出點(diǎn)(x,y)在函數(shù)y=x+1的圖象上的情況,利用概率公式即可求得答案.【詳解】畫樹狀圖得:共有12種等可能的結(jié)果、、、、、、、、、、、;在所有12種等可能結(jié)果中,在函數(shù)的圖象上的有、、這3種結(jié)果,點(diǎn)在函數(shù)的圖象上的概率為.【點(diǎn)睛】本題考查的是用列表法或樹狀圖法求概率,一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征.注意樹狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.21、(1)60°;(2)證明略;(3)【解析】
(1)根據(jù)∠ABC與∠D都是劣弧AC所對的圓周角,利用圓周角定理可證出∠ABC=∠D=60°;
(2)根據(jù)AB是⊙O的直徑,利用直徑所對的圓周角是直角得到∠ACB=90°,結(jié)合∠ABC=60°求得∠BAC=30°,從而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切線;
(3)連結(jié)OC,證出△OBC是等邊三角形,算出∠BOC=60°且⊙O的半徑等于4,可得劣弧AC所對的圓心角∠AOC=120°,再由弧長公式加以計(jì)算,可得劣弧AC的長.【詳解】(1)∵∠ABC與∠D都是弧AC所對的圓周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直徑,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切線;(3)如圖,連接OC,∵OB=OC,∠ABC=60°,∴△OBC是等邊三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的長為==.【點(diǎn)睛】本題考查了切線長定理及弧長公式,熟練掌握定理及公式是解題的關(guān)鍵.22、39米【解析】
過點(diǎn)A作AE⊥CD,垂足為點(diǎn)E,在Rt△ADE中,利用三角函數(shù)求出的長,在Rt△ACE中,求出的長即可得.【詳解】解:過點(diǎn)A作AE⊥CD,垂足為點(diǎn)E,由題意得,AE=BC=28,∠EAD=25°,∠EAC=43°,在Rt△ADE中,∵,∴,在Rt△ACE中,∵,∴,∴(米),答:建筑物CD的高度約為39米.23、(1)300米/分;(2)y=﹣300x+3000;(3)分.【解析】
(1)由圖象看出所需時(shí)間.再根據(jù)路程÷時(shí)間=速度算出小張騎自行車的速度.
(2)根據(jù)由小張的速度可知:B(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 商鋪裝修協(xié)議合同二零二五年
- 專業(yè)人才補(bǔ)貼服務(wù)協(xié)議二零二五年
- 總經(jīng)理聘用協(xié)議集錦
- 二零二五版實(shí)習(xí)教師協(xié)議合同
- 上海市公考真題2024
- 國際醫(yī)學(xué)中心醫(yī)院招聘真題2024
- 2024年寶雞市市屬事業(yè)單位考試真題
- 廠級職工安全培訓(xùn)考試題及答案 審定版
- 企業(yè)管理人員安全培訓(xùn)考試題(達(dá)標(biāo)題)
- 安全管理人員安全培訓(xùn)考試題附完整答案【必刷】
- 2022湖南省郴州市中考物理真題試卷和答案
- 救護(hù)車使用培訓(xùn)課件
- 經(jīng)典成語故事鄭人買履
- 人血白蛋白介紹演示培訓(xùn)課件
- 大學(xué)軍事理論課教程第三章軍事思想第四節(jié)當(dāng)代中國軍事思想
- 茶葉加工工理論試卷及答案
- 建筑企業(yè)法律服務(wù)方案
- 空調(diào)維保服務(wù)投標(biāo)方案(技術(shù)標(biāo))
- 幼兒園戶外自主游戲
- 22S803 圓形鋼筋混凝土蓄水池
- 煙供.火供.火施儀軌
評論
0/150
提交評論