全等三角形證明經(jīng)典50題含答案解析_第1頁(yè)
全等三角形證明經(jīng)典50題含答案解析_第2頁(yè)
全等三角形證明經(jīng)典50題含答案解析_第3頁(yè)
全等三角形證明經(jīng)典50題含答案解析_第4頁(yè)
全等三角形證明經(jīng)典50題含答案解析_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

...wd......wd......wd...:AB=4,AC=2,D是BC中點(diǎn),111749AD是整數(shù),求ADAADBC解:延長(zhǎng)AD到E,使AD=DE∵D是BC中點(diǎn)∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=2:D是AB中點(diǎn),∠ACB=90°,求證:DADABC∵DP=DC,DA=DB∴ACBP為平行四邊形又∠ACB=90∴平行四邊形ACBP為矩形∴AB=CP=1/2AB

:BC=DE,∠B=∠E,∠C=∠D,F(xiàn)是CD中點(diǎn),求證:∠1=∠2

ABABCDEF21∵BC=ED,CF=DF,∠BCF=∠EDF∴三角形BCF全等于三角形EDF(邊角邊)∴BF=EF,∠CBF=∠DEF連接BE在三角形BEF中,BF=EF∴∠EBF=∠BEF?!摺螦BC=∠AED?!唷螦BE=∠AEB?!郃B=AE。在三角形ABF和三角形AEF中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴三角形ABF和三角形AEF全等。

∴∠BAF=∠EAF(∠1=∠2)。:∠1=∠2,CD=DE,EF//AB,求證:EF=ACBACDF21E過(guò)C作CG∥EF交AD的延長(zhǎng)線于點(diǎn)G

CG∥EF,可得,∠EFD=CGD

DE=DC

∠FDE=∠GDC〔對(duì)頂角〕

∴△EFD≌△CGD

EF=CG

∠CGD=∠EFD

又,EF∥AB

∴BACDF21E:AD平分∠BAC,AC=AB+BD,求證:∠B=2∠CAA證明:延長(zhǎng)AB取點(diǎn)E,使AE=AC,連接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD〔SAS〕∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求證:AE=AD+BE

證明:在AE上取F,使EF=EB,連接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC〔SAS〕∴AD=AF∴AE=AF+FE=AD+BE:AB=4,AC=2,D是BC中點(diǎn),AD是整數(shù),求ADAADBC解:延長(zhǎng)AD到E,使AD=DE

∵D是BC中點(diǎn)

∴BD=DC

在△ACD和△BDE中

AD=DE

∠BDE=∠ADC

BD=DC

∴△ACD≌△BDE

∴AC=BE=2

∵在△ABE中

AB-BE<AE<AB+BE

∵AB=4

即4-2<2AD<4+2

1<AD<3

∴AD=2:D是AB中點(diǎn),∠ACB=90°,求證:DADABC:BC=DE,∠B=∠E,∠C=∠D,F(xiàn)是CD中點(diǎn),求證:∠1=∠2AABCDEF21證明:連接BF和EF?!連C=ED,CF=DF,∠BCF=∠EDF。∴三角形BCF全等于三角形EDF(邊角邊)?!郆F=EF,∠CBF=∠DEF。連接BE。在三角形BEF中,BF=EF?!唷螮BF=∠BEF。又∵∠ABC=∠AED?!唷螦BE=∠AEB。∴AB=AE。在三角形ABF和三角形AEF中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF?!嗳切蜛BF和三角形AEF全等?!唷螧AF=∠EAF(∠1=∠2)。:∠1=∠2,CD=DE,EF//AB,求證:EF=ACBACDF21E過(guò)C作CG∥EF交AD的延長(zhǎng)線于點(diǎn)G

CG∥EF,可得,∠EFD=CGD

DE=DC

∠FDE=∠GDC〔對(duì)頂角〕

∴△EFD≌△CGD

EF=CG

∠CGD=∠EFD

又EF∥AB

∴BACDF21E:AD平分∠BAC,AC=AB+BD,求證:∠B=2∠CACACDB證明:延長(zhǎng)AB取點(diǎn)E,使AE=AC,連接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD〔SAS〕∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求證:AE=AD+BE

在AE上取F,使EF=EB,連接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC又∵AC=AC∴△ADC≌△AFC〔SAS〕∴AD=AF∴AE=AF+FE=AD+BE12.如圖,四邊形ABCD中,AB∥DC,BE、CE分別平分∠ABC、∠BCD,且點(diǎn)E在AD上。求證:BC=AB+DC。

在BC上截取BF=AB,連接EF∵BE平分∠ABC∴∠ABE=∠FBE又∵BE=BE∴⊿ABE≌⊿FBE〔SAS〕∴∠A=∠BFE∵AB//CD∴∠A+∠D=180o∵∠BFE+∠CFE=180o∴∠D=∠CFE又∵∠DCE=∠FCE

CE平分∠BCDCE=CE∴⊿DCE≌⊿FCE〔AAS〕∴CD=CF∴BC=BF+CF=AB+CD13.:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求證:∠F=∠CDDCBAFEAB‖ED,得:∠EAB+∠AED=∠BDE+∠ABD=180度,∵∠EAB=∠BDE,∴∠AED=∠ABD,∴四邊形ABDE是平行四邊形?!嗟茫篈E=BD,∵AF=CD,EF=BC,∴三角形AEF全等于三角形DBC,∴∠F=∠C。:AB=CD,∠A=∠D,求證:∠B=∠CAABCD證明:設(shè)線段AB,CD所在的直線交于E,〔當(dāng)AD<BC時(shí),E點(diǎn)是射線BA,CD的交點(diǎn),當(dāng)AD>BC時(shí),E點(diǎn)是射線AB,DC的交點(diǎn)〕。則:△AED是等腰三角形。∴AE=DE而AB=CD∴BE=CE(等量加等量,或等量減等量〕∴△BEC是等腰三角形∴∠B=∠C.P是∠BAC平分線AD上一點(diǎn),AC>AB,求證:PC-PB<AC-ABPPDACB在AC上取點(diǎn)E,

使AE=AB。

∵AE=ABAP=AP∠EAP=∠BAE,

∴△EAP≌△BAP

∴PE=PB。

PC<EC+PE

∴PC<〔AC-AE〕+PB

∴PC-PB<AC-AB?!螦BC=3∠C,∠1=∠2,BE⊥AE,求證:AC-AB=2BE證明:

在AC上取一點(diǎn)D,使得角DBC=角C

∵∠ABC=3∠C

∴∠ABD=∠ABC-∠DBC=3∠C-∠C=2∠C;

∵∠ADB=∠C+∠DBC=2∠C;

∴AB=AD

∴AC–AB=AC-AD=CD=BD

在等腰三角形ABD中,AE是角BAD的角平分線,

∴AE垂直BD

∵BE⊥AE

∴點(diǎn)E一定在直線BD上,

在等腰三角形ABD中,AB=AD,AE垂直BD

∴點(diǎn)E也是BD的中點(diǎn)

∴BD=2BE

∵BD=CD=AC-AB

∴AC-AB=2BE,E是AB中點(diǎn),AF=BD,BD=5,AC=7,求DCFAEDCB∵作AG∥BD交DE延長(zhǎng)線于G

∴AGE全等BDE

∴FAEDCB18.如圖,在△ABC中,BD=DC,∠1=∠2,求證:AD⊥BC.

解:延長(zhǎng)AD至BC于點(diǎn)E,

∵BD=DC∴△BDC是等腰三角形

∴∠DBC=∠DCB

又∵∠1=∠2∴∠DBC+∠1=∠DCB+∠2

即∠ABC=∠ACB

∴△ABC是等腰三角形

∴AB=AC

在△ABD和△ACD中

{AB=AC

∠1=∠2

BD=DC

∴△ABD和△ACD是全等三角形〔邊角邊〕

∴∠BAD=∠CAD

∴AE是△ABC的中垂線

∴AE⊥BC

∴AD⊥BC19.如圖,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B為垂足,AB交OM于點(diǎn)N.求證:∠OAB=∠OBA證明:∵OM平分∠POQ∴∠POM=∠QOM∵M(jìn)A⊥OP,MB⊥OQ∴∠MAO=∠MBO=90∵OM=OM∴△AOM≌△BOM〔AAS〕∴OA=OB∵ON=ON∴△AON≌△BON〔SAS〕∴∠OAB=∠OBA,∠ONA=∠ONB∵∠ONA+∠ONB=180∴∠ONA=∠ONB=90∴OM⊥AB20.〔5分〕如圖,AD∥BC,∠PAB的平分線與∠CBA的平分線相交于E,CE的連線交AP于D.求證:AD+BC=AB.做BE的延長(zhǎng)線,與AP相交于F點(diǎn),∵PA//BC∴∠PAB+∠CBA=180°,又∵,AE,BE均為∠PAB和∠CBA的角平分線∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB為直角三角形在三角形ABF中,AE⊥BF,且AE為∠FAB的角平分線∴三角形FAB為等腰三角形,AB=AF,BE=EF在三角形DEF與三角形BEC中,∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB,∴三角形DEF與三角形BEC為全等三角形,∴DF=BC∴AB=AF=AD+DF=AD+BC21.如圖,△ABC中,AD是∠CAB的平分線,且AB=AC+CD,求證:∠C=2∠B延長(zhǎng)AC到E

使AE=AC連接ED∵AB=AC+CD∴CD=CE

可得∠B=∠E△CDE為等腰

∠ACB=2∠B22.〔6分〕如圖①,E、F分別為線段AC上的兩個(gè)動(dòng)點(diǎn),且DE⊥AC于E,BF⊥AC于F,假設(shè)AB=CD,AF=CE,BD交AC于點(diǎn)M.〔1〕求證:MB=MD,ME=MF〔2〕當(dāng)E、F兩點(diǎn)移動(dòng)到如圖②的位置時(shí),其余條件不變,上述結(jié)論能否成立假設(shè)成立請(qǐng)給予證明;假設(shè)不成立請(qǐng)說(shuō)明理由.

〔1〕連接BE,DF.

∵DE⊥AC于E,BF⊥AC于F,

∴∠DEC=∠BFA=90°,DE∥BF,

在Rt△DEC和Rt△BFA中,

∵AF=CE,AB=CD,

∴Rt△DEC≌Rt△BFA〔HL〕,

∴DE=BF.

∴四邊形BEDF是平行四邊形.

∴MB=MD,ME=MF;

〔2〕連接BE,DF.

∵DE⊥AC于E,BF⊥AC于F,

∴∠DEC=∠BFA=90°,DE∥BF,

在Rt△DEC和Rt△BFA中,

∵AF=CE,AB=CD,

∴Rt△DEC≌Rt△BFA〔HL〕,

∴DE=BF.

∴四邊形BEDF是平行四邊形.

∴MB=MD,ME=MF.23.:如圖,DC∥AB,且DC=AE,E為AB的中點(diǎn),〔1〕求證:△AED≌△EBC.〔2〕觀看圖前,在不添輔助線的情況下,除△EBC外,請(qǐng)?jiān)賹?xiě)出兩個(gè)與△AED的面積相等的三角形.〔直接寫(xiě)出結(jié)果,不要求證明〕:

證明:∵DC∥AB∴∠CDE=∠AED∵DE=DE,DC=AE∴△AED≌△EDC∵E為AB中點(diǎn)∴AE=BE∴BE=DC∵DC∥AB∴∠DCE=∠BEC∵CE=CE∴△EBC≌△EDC∴△AED≌△EBC

24.〔7分〕如圖,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分線,BD的延長(zhǎng)線垂直于過(guò)C點(diǎn)的直線于E,直線CE交BA的延長(zhǎng)線于F.求證:BD=2CE.

證明:

∵∠CEB=∠CAB=90°∴ABCE四點(diǎn)共元∵∠ABE=∠CBE∴AE=CE∴∠ECA=∠EAC取線段BD的中點(diǎn)G,連接AG,則:AG=BG=DG∴∠GAB=∠ABG而:∠ECA=∠GBA(同弧上的圓周角相等〕∴∠ECA=∠EAC=∠GBA=∠GAB而:AC=AB∴△AEC≌△AGB∴EC=BG=DG∴BE=2CE

25、如圖:DF=CE,AD=BC,∠D=∠C。求證:△AED≌△BFC。證明:∵DF=CE,∴DF-EF=CE-EF,即DE=CF,在△AED和△BFC中,∵AD=BC,∠D=∠C,DE=CF∴△AED≌△BFC〔SAS〕

26、〔10分〕如圖:AE、BC交于點(diǎn)M,F(xiàn)點(diǎn)在AM上,BE∥CF,BE=CF。求證:AM是△ABC的中線。證明:∵BE‖CF∴∠E=∠CFM,∠EBM=∠FCM∵BE=CF∴△BEM≌△CFM∴BM=CM∴AM是△ABC的中線.27、〔10分〕如圖:在△ABC中,BA=BC,D是AC的中點(diǎn)。求證:BD⊥AC?!摺鰽BD和△BCD的三條邊都相等

∴△ABD=△BCD∴∠ADB=∠CD

∴∠ADB=∠CDB=90°∴BD⊥AC28、〔10分〕AB=AC,DB=DC,F(xiàn)是AD的延長(zhǎng)線上的一點(diǎn)。求證:BF=CF在△ABD與△ACD中AB=ACBD=DCAD=AD∴△ABD≌△ACD∴∠ADB=∠ADC∴∠BDF=∠FDC在△BDF與△FDC中BD=DC∠BDF=∠FDCDF=DF∴△FBD≌△FCD∴BF=FC29、〔12分〕如圖:AB=CD,AE=DF,CE=FB。求證:AF=DE?!逜B=DCAE=DF,CE=FBCE+EF=EF+FB∴△ABE=△CDF∵∠DCB=∠ABFAB=DCBF=CE△ABF=△CDE∴AF=DE30.公園里有一條“Z〞字形道路ABCD,如以以下圖,其中AB∥CD,在AB,CD,BC三段路旁各有一只小石凳E,F(xiàn),M,且BE=CF,M在BC的中點(diǎn),試說(shuō)明三只石凳E,F(xiàn),M恰好在一條直線上.證明:連接EF

∵AB∥CD

∴∠B=∠C

∵M(jìn)是BC中點(diǎn)

∴BM=CM

在△BEM和△CFM中

BE=CF

∠B=∠C

BM=CM

∴△BEM≌△CFM〔SAS〕

∴CF=BE

31.:點(diǎn)A、F、E、C在同一條直線上,AF=CE,BE∥DF,BE=DF.求證:△ABE≌△CDF.∵AF=CE,FE=EF.∴AE=CF.∵DF//BE,∴∠AEB=∠CFD〔兩直線平行,內(nèi)錯(cuò)角相等〕∵BE=DF∴:△ABE≌△CDF〔SAS〕32.:如以以下圖,AB=AD,BC=DC,E、F分別是DC、BC的中點(diǎn),求證:AE=AF。DDBCcAFE連接BD;

∵AB=ADBC=D

∴∠ADB=∠ABD∠CDB=∠ABD;兩角相加,∠ADC=∠ABC;

∵BC=DCE\F是中點(diǎn)

∴DE=BF;

∵AB=ADDE=BF

∠ADC=∠ABC

∴AE=AF。

33.如圖,在四邊形ABCD中,E是AC上的一點(diǎn),∠1=∠2,∠3=∠4,求證:∠5=∠6.證明:在△ADC,△ABC中∵AC=AC,∠BAC=∠DAC,∠BCA=∠DCA∴△ADC≌△ABC〔兩角加一邊〕∵AB=AD,BC=CD在△DEC與△BEC中∠BCA=∠DCA,CE=CE,BC=CD∴△DEC≌△BEC〔兩邊夾一角〕∴∠DEC=∠BEC34.∵AD=DF

∴AC=DF

∵AB//DE

∴∠A=∠EDF

又∵BC//EF

∴∠F=∠BCA

∴△ABC≌△DEF〔ASA〕35.:如圖,AB=AC,BDAC,CEAB,垂足分別為D、E,BD、CE相交于點(diǎn)F,求證:BE=CD.AACBDEF證明:

∵BD⊥AC∴∠BDC=90°∵CE⊥AB∴∠BEC=90°∴∠BDC=∠BEC=90°∵AB=AC

∴∠DCB=∠EBC∴BC=BC

∴Rt△BDC≌Rt△BEC〔AAS)

∴BE=CD如圖,在△ABC中,AD為∠BAC的平分線,DE⊥AB于E,DF⊥AC于F。求證:DE=DF.AEBDCFAEBDCF∴∠EAD=∠FAD∵DE⊥AB,DF⊥AC∴∠BFD=∠CFD=90°∴∠AED與∠AFD=90°在△AED與△AFD中∠EAD=∠FADAD=AD∠AED=∠AFD∴△AED≌△AFD〔AAS〕∴AE=AF在△AEO與△AFO中∠EAO=∠FAOAO=AOAE=AF∴△AEO≌△AFO〔SAS〕

∴∠AOE=∠AOF=90°∴AD⊥EF37.:如圖,ACBC于C,DEAC于E,ADAB于A,BC=AE.假設(shè)AB=5,求AD的長(zhǎng)DDCBAE∵AD⊥AB

∴∠BAC=∠ADE

又∵AC⊥BC于C,DE⊥AC于E

根據(jù)三角形角度之和等于180度

∴∠ABC=∠DAE

∵BC=AE,△ABC≌△DAE〔ASA〕∴AD=AB=538.如圖:AB=AC,ME⊥AB,MF⊥AC,垂足分別為E、F,ME=MF。求證:MB=MC證明:

∵AB=AC∴∠B=∠C∵M(jìn)E⊥AB,MF⊥AC∴∠BEM=∠CFM=90°在△BME和△CMF中∵∠B=∠C∠BEM=∠CFM=90°ME=MF∴△BME≌△CMF〔AAS〕∴MB=MC.39.如圖,給出五個(gè)等量關(guān)系:①②③④⑤.請(qǐng)你以其中兩個(gè)為條件,另三個(gè)中的一個(gè)為結(jié)論,推出一個(gè)正確的結(jié)論〔只需寫(xiě)出一種情況〕,并加以證明.:①AD=BC,⑤∠DAB=∠CBA

求證:△DAB≌△CBA

證明:∵AD=BC,∠DAB=∠CBA

又∵AB=AB

∴△DAB≌△CBA40.在△ABC中,,,直線經(jīng)過(guò)點(diǎn),且于,于.(1)當(dāng)直線繞點(diǎn)旋轉(zhuǎn)到圖1的位置時(shí),求證:①≌②;(2)當(dāng)直線繞點(diǎn)旋轉(zhuǎn)到圖2的位置時(shí),〔1〕中的結(jié)論還成立嗎假設(shè)成立,請(qǐng)給出證明;假設(shè)不成立,說(shuō)明理由.〔1〕

①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.②∵△ADC≌△CEB,∴CE=AD,CD=BE.∴DE=CE+CD=AD+BE.〔2〕∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.又∵AC=BC,∴△ACD≌△CBE.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD﹣BE41.如以以下圖,AE⊥AB,AF⊥AC,AE=AB,AF=AC。求證:〔1〕EC=BF;〔2〕EC⊥BFAAEBMCF〔1〕∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,在△ABF和△AEC中,∵AE=AB,∠EAC=∠BAF,AF=AC,∴△ABF≌△AEC〔SAS〕,∴EC=BF;〔2〕如圖,根據(jù)〔1〕,△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM〔對(duì)頂角相等〕,∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°-∠ABF-∠BDM=180°-90°=90°,∴EC⊥BF.42.如圖:BE⊥AC,CF⊥AB,BM=AC,CN=AB。求證:〔1〕AM=AN;〔2〕AM⊥AN。證明:〔1〕∵BE⊥AC,CF⊥AB∴∠ABM+∠BAC=90°,∠ACN+∠BAC=90°∴∠ABM=∠ACN∵BM=AC,CN=AB∴△ABM≌△NAC∴AM=AN〔2〕∵△ABM≌△NAC∴∠BAM=∠N∵∠N+∠BAN=90°∴∠BAM+∠BAN=90°即∠MAN=90°∴AM⊥AN43.如圖,∠A=∠D,AB=DE,AF=CD,BC=EF.求證:BC∥EF在△ABF和△CDE中,AB=DE∠A=∠DAF=CD∴△ABF≡△CDE〔邊角邊〕∴FB=CE在四邊形BCEF中FB=CEBC=EF∴四邊形BCEF是平行四邊形∴BC‖EF44.如圖,AC∥BD,EA、EB分別平分∠CAB和∠DBA,CD過(guò)點(diǎn)E,則AB與AC+BD相等嗎請(qǐng)說(shuō)明理由在AB上取點(diǎn)N,使得AN=AC∵∠CAE=∠EAN

∴AE為公共,

∴△CAE≌△EAN∴∠ANE=∠ACE又∵AC平行BD∴∠ACE+∠BDE=180而∠ANE+∠ENB=180∴∠ENB=∠BDE∠NBE=∠EBN∵BE為公共邊

∴△EBN≌△EBD∴BD=BN∴AB=AN+BN=AC+BD45、〔10分〕如圖,:AD是BC上的中線,且DF=DE.求證:BE∥CF.證明:

∵AD是△ABC的中線BD=CD∵DF=DE〔〕∠BDE=∠FDC∴△BDE≌

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論