2024屆山東省沂源縣市級名校中考數(shù)學全真模擬試卷含解析_第1頁
2024屆山東省沂源縣市級名校中考數(shù)學全真模擬試卷含解析_第2頁
2024屆山東省沂源縣市級名校中考數(shù)學全真模擬試卷含解析_第3頁
2024屆山東省沂源縣市級名校中考數(shù)學全真模擬試卷含解析_第4頁
2024屆山東省沂源縣市級名校中考數(shù)學全真模擬試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆山東省沂源縣市級名校中考數(shù)學全真模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.正五邊形繞著它的中心旋轉(zhuǎn)后與它本身重合,最小的旋轉(zhuǎn)角度數(shù)是()A.36° B.54° C.72° D.108°2.如圖,在△ABC中,AC=BC,點D在BC的延長線上,AE∥BD,點ED在AC同側(cè),若∠CAE=118°,則∠B的大小為()A.31° B.32° C.59° D.62°3.如圖,將△ABC沿著點B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距離為6,則陰影部分面積為()A.42 B.96 C.84 D.484.計算3×(﹣5)的結(jié)果等于()A.﹣15B.﹣8C.8D.155.如圖,△ABC中,BC=4,⊙P與△ABC的邊或邊的延長線相切.若⊙P半徑為2,△ABC的面積為5,則△ABC的周長為()A.8 B.10 C.13 D.146.如圖所示是放置在正方形網(wǎng)格中的一個,則的值為()A. B. C. D.7.如圖,已知是的角平分線,是的垂直平分線,,,則的長為()A.6 B.5 C.4 D.8.“射擊運動員射擊一次,命中靶心”這個事件是()A.確定事件B.必然事件C.不可能事件D.不確定事件9.若正比例函數(shù)y=mx(m是常數(shù),m≠0)的圖象經(jīng)過點A(m,4),且y的值隨x值的增大而減小,則m等于()A.2 B.﹣2 C.4 D.﹣410.如果一個多邊形的內(nèi)角和是外角和的3倍,則這個多邊形的邊數(shù)是()A.8 B.9 C.10 D.1111.“嫦娥一號”衛(wèi)星順利進入繞月工作軌道,行程約有1800000千米,1800000這個數(shù)用科學記數(shù)法可以表示為A. B. C. D.12.如圖,中,E是BC的中點,設,那么向量用向量表示為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,將矩形ABCD繞其右下角的頂點按順時針方向旋轉(zhuǎn)90°至圖①位置,繼續(xù)繞右下角的頂點按順時針方向旋轉(zhuǎn)90°至圖②位置,以此類推,這樣連續(xù)旋轉(zhuǎn)2017次.若AB=4,AD=3,則頂點A在整個旋轉(zhuǎn)過程中所經(jīng)過的路徑總長為_____.14.如圖,在正方形ABCD中,E是AB上一點,BE=2,AE=3BE,P是AC上一動點,則PB+PE的最小值是.15.在一個不透明的盒子中裝有8個白球,若干個黃球,它們除顏色不同外,其余均相同.若從中隨機摸出一個球,它是白球的概率為,則黃球的個數(shù)為______.16.如圖,點A在雙曲線上,點B在雙曲線上,且AB∥x軸,C、D在x軸上,若四邊形ABCD為矩形,則它的面積為.17.正五邊形的內(nèi)角和等于______度.18.哈爾濱市某樓盤以每平方米10000元的均價對外銷售,經(jīng)過連續(xù)兩次上調(diào)后,均價為每平方米12100元,則平均每次上調(diào)的百分率為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,∠ACB=90°,O是AB上一點,以OA為半徑的⊙O與BC相切于點D,與AB交于點E,連接ED并延長交AC的延長線于點F.(1)求證:AE=AF;(2)若DE=3,sin∠BDE=,求AC的長.20.(6分)如圖,是的外接圓,是的直徑,過圓心的直線于,交于,是的切線,為切點,連接,.(1)求證:直線為的切線;(2)求證:;(3)若,,求的長.21.(6分)如圖1,拋物線y=ax2+bx﹣2與x軸交于點A(﹣1,0),B(4,0)兩點,與y軸交于點C,經(jīng)過點B的直線交y軸于點E(0,2).(1)求該拋物線的解析式;(2)如圖2,過點A作BE的平行線交拋物線于另一點D,點P是拋物線上位于線段AD下方的一個動點,連結(jié)PA,EA,ED,PD,求四邊形EAPD面積的最大值;(3)如圖3,連結(jié)AC,將△AOC繞點O逆時針方向旋轉(zhuǎn),記旋轉(zhuǎn)中的三角形為△A′OC′,在旋轉(zhuǎn)過程中,直線OC′與直線BE交于點Q,若△BOQ為等腰三角形,請直接寫出點Q的坐標.22.(8分)為落實黨中央“長江大保護”新發(fā)展理念,我市持續(xù)推進長江岸線保護,還洞庭湖和長江水清岸綠的自然生態(tài)原貌.某工程隊負責對一面積為33000平方米的非法砂石碼頭進行拆除,回填土方和復綠施工,為了縮短工期,該工程隊增加了人力和設備,實際工作效率比原計劃每天提高了20%,結(jié)果提前11天完成任務,求實際平均每天施工多少平方米?23.(8分)一只不透明的袋子中裝有2個白球和1個紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個球(不放回),再從余下的2個球中任意摸出1個球.用樹狀圖或列表等方法列出所有可能出現(xiàn)的結(jié)果;求兩次摸到的球的顏色不同的概率.24.(10分)如圖,在矩形ABCD的外側(cè),作等邊三角形ADE,連結(jié)BE,CE,求證:BE=CE.25.(10分)為了保障市民安全用水,我市啟動自來水管改造工程,該工程若甲隊單獨施工,恰好在規(guī)定時間內(nèi)完成;若由乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的3倍.若甲、乙兩隊先合作施工45天,則余下的工程甲隊還需單獨施工23天才能完成.這項工程的規(guī)定時間是多少天?26.(12分)某商城銷售A,B兩種自行車型自行車售價為2

100元輛,B型自行車售價為1

750元輛,每輛A型自行車的進價比每輛B型自行車的進價多400元,商城用80

000元購進A型自行車的數(shù)量與用64

000元購進B型自行車的數(shù)量相等.求每輛A,B兩種自行車的進價分別是多少?現(xiàn)在商城準備一次購進這兩種自行車共100輛,設購進A型自行車m輛,這100輛自行車的銷售總利潤為y元,要求購進B型自行車數(shù)量不超過A型自行車數(shù)量的2倍,總利潤不低于13

000元,求獲利最大的方案以及最大利潤.27.(12分)如圖所示,內(nèi)接于圓O,于D;(1)如圖1,當AB為直徑,求證:;(2)如圖2,當AB為非直徑的弦,連接OB,則(1)的結(jié)論是否成立?若成立請證明,不成立說明由;(3)如圖3,在(2)的條件下,作于E,交CD于點F,連接ED,且,若,,求CF的長度.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】正五邊形繞著它的中心旋轉(zhuǎn)后與它本身重合,最小的旋轉(zhuǎn)角度數(shù)是=72度,故選C.2、A【解析】

根據(jù)等腰三角形的性質(zhì)得出∠B=∠CAB,再利用平行線的性質(zhì)解答即可.【詳解】∵在△ABC中,AC=BC,∴∠B=∠CAB,∵AE∥BD,∠CAE=118°,∴∠B+∠CAB+∠CAE=180°,即2∠B=180°?118°,解得:∠B=31°,故選A.【點睛】此題考查等腰三角形的性質(zhì),關(guān)鍵是根據(jù)等腰三角形的性質(zhì)得出∠B=∠CAB.3、D【解析】

由平移的性質(zhì)知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四邊形ODFC=S梯形ABEO=(AB+OE)?BE=(10+6)×6=1.故選D.【點睛】本題考查平移的性質(zhì),平移前后兩個圖形大小,形狀完全相同,圖形上的每個點都平移了相同的距離,對應點之間的距離就是平移的距離.4、A【解析】

按照有理數(shù)的運算規(guī)則計算即可.【詳解】原式=-3×5=-15,故選擇A.【點睛】本題考查了有理數(shù)的運算,注意符號不要搞錯.5、C【解析】

根據(jù)三角形的面積公式以及切線長定理即可求出答案.【詳解】連接PE、PF、PG,AP,由題意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=BC?PE=×4×2=4,∴由切線長定理可知:S△PFC+S△PBG=S△PBC=4,∴S四邊形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切線長定理可知:S△APG=S四邊形AFPG=,∴=×AG?PG,∴AG=,由切線長定理可知:CE=CF,BE=BG,∴△ABC的周長為AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故選C.【點睛】本題考查切線長定理,解題的關(guān)鍵是畫出輔助線,熟練運用切線長定理,本題屬于中等題型.6、D【解析】

首先過點A向CB引垂線,與CB交于D,表示出BD、AD的長,根據(jù)正切的計算公式可算出答案.【詳解】解:過點A向CB引垂線,與CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=故選:D.【點睛】此題主要考查了銳角三角函數(shù)的定義,關(guān)鍵是掌握正切:銳角A的對邊a與鄰邊b的比叫做∠A的正切,記作tanA.7、D【解析】

根據(jù)ED是BC的垂直平分線、BD是角平分線以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,從而可得CD=BD=2AD=6,然后利用三角函數(shù)的知識進行解答即可得.【詳解】∵ED是BC的垂直平分線,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分線,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE=3,故選D.【點睛】本題考查了線段垂直平分線的性質(zhì),三角形內(nèi)角和定理,含30度角的直角三角形的性質(zhì),余弦等,結(jié)合圖形熟練應用相關(guān)的性質(zhì)及定理是解題的關(guān)鍵.8、D【解析】試題分析:“射擊運動員射擊一次,命中靶心”這個事件是隨機事件,屬于不確定事件,故選D.考點:隨機事件.9、B【解析】

利用待定系數(shù)法求出m,再結(jié)合函數(shù)的性質(zhì)即可解決問題.【詳解】解:∵y=mx(m是常數(shù),m≠0)的圖象經(jīng)過點A(m,4),∴m2=4,∴m=±2,∵y的值隨x值的增大而減小,∴m<0,∴m=﹣2,故選:B.【點睛】本題考查待定系數(shù)法,一次函數(shù)的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,屬于中考??碱}型.10、A【解析】分析:根據(jù)多邊形的內(nèi)角和公式及外角的特征計算.詳解:多邊形的外角和是360°,根據(jù)題意得:

110°?(n-2)=3×360°

解得n=1.

故選A.點睛:本題主要考查了多邊形內(nèi)角和公式及外角的特征.求多邊形的邊數(shù),可以轉(zhuǎn)化為方程的問題來解決.11、C【解析】分析:一個絕對值大于10的數(shù)可以表示為的形式,其中為整數(shù).確定的值時,整數(shù)位數(shù)減去1即可.當原數(shù)絕對值>1時,是正數(shù);當原數(shù)的絕對值<1時,是負數(shù).詳解:1800000這個數(shù)用科學記數(shù)法可以表示為故選C.點睛:考查科學記數(shù)法,掌握絕對值大于1的數(shù)的表示方法是解題的關(guān)鍵.12、A【解析】

根據(jù),只要求出即可解決問題.【詳解】解:四邊形ABCD是平行四邊形,,,,,,,故選:A.【點睛】本題考查平面向量,解題的關(guān)鍵是熟練掌握三角形法則,屬于中考??碱}型.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】分析:首先求得每一次轉(zhuǎn)動的路線的長,發(fā)現(xiàn)每4次循環(huán),找到規(guī)律然后計算即可.詳解:∵AB=4,BC=3,∴AC=BD=5,轉(zhuǎn)動一次A的路線長是:轉(zhuǎn)動第二次的路線長是:轉(zhuǎn)動第三次的路線長是:轉(zhuǎn)動第四次的路線長是:0,以此類推,每四次循環(huán),故頂點A轉(zhuǎn)動四次經(jīng)過的路線長為:∵2017÷4=504…1,∴頂點A轉(zhuǎn)動四次經(jīng)過的路線長為:故答案為點睛:考查旋轉(zhuǎn)的性質(zhì)和弧長公式,熟記弧長公式是解題的關(guān)鍵.14、10【解析】

由正方形性質(zhì)的得出B、D關(guān)于AC對稱,根據(jù)兩點之間線段最短可知,連接DE,交AC于P,連接BP,則此時PB+PE的值最小,進而利用勾股定理求出即可.【詳解】如圖,連接DE,交AC于P,連接BP,則此時PB+PE的值最小.∵四邊形ABCD是正方形,∴B、D關(guān)于AC對稱,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案為10.15、1【解析】首先設黃球的個數(shù)為x個,然后根據(jù)概率公式列方程即可求得答案.解:設黃球的個數(shù)為x個,根據(jù)題意得:=2/3解得:x=1.∴黃球的個數(shù)為1.16、2【解析】

如圖,過A點作AE⊥y軸,垂足為E,∵點A在雙曲線上,∴四邊形AEOD的面積為1∵點B在雙曲線上,且AB∥x軸,∴四邊形BEOC的面積為3∴四邊形ABCD為矩形,則它的面積為3-1=217、540【解析】

過正五邊形五個頂點,可以畫三條對角線,把五邊形分成3個三角形∴正五邊形的內(nèi)角和=3180=540°18、10%【解析】

設平均每次上調(diào)的百分率是x,因為經(jīng)過兩次上調(diào),且知道調(diào)前的價格和調(diào)后的價格,從而列方程求出解.【詳解】設平均每次上調(diào)的百分率是x,依題意得,解得:,(不合題意,舍去).答:平均每次上調(diào)的百分率為10%.故答案是:10%.【點睛】此題考查了一元二次方程的應用.解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程,再求解.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)1.【解析】

(1)根據(jù)切線的性質(zhì)和平行線的性質(zhì)解答即可;(2)根據(jù)直角三角形的性質(zhì)和三角函數(shù)解答即可.【詳解】(1)連接OD,∵OD=OE,∴∠ODE=∠OED.∵直線BC為⊙O的切線,∴OD⊥BC.∴∠ODB=90°.∵∠ACB=90°,∴OD∥AC.∴∠ODE=∠F.∴∠OED=∠F.∴AE=AF;(2)連接AD,∵AE是⊙O的直徑,∴∠ADE=90°,∵AE=AF,∴DF=DE=3,∵∠ACB=90°,∴∠DAF+∠F=90°,∠CDF+∠F=90°,∴∠DAF=∠CDF=∠BDE,在Rt△ADF中,=sin∠DAF=sin∠BDE=,∴AF=3DF=9,在Rt△CDF中,=sin∠CDF=sin∠BDE=,∴CF=DF=1,∴AC=AF﹣CF=1.【點睛】本題考查了切線的性質(zhì),解直角三角形的應用,等腰三角形的判定等,綜合性較強,正確添加輔助線、熟練掌握和靈活運用相關(guān)知識是解題的關(guān)鍵.20、(1)證明見解析;(2)證明見解析;(3)1.【解析】

(1)連接OA,由OP垂直于AB,利用垂徑定理得到D為AB的中點,即OP垂直平分AB,可得出AP=BP,再由OA=OB,OP=OP,利用SSS得出三角形AOP與三角形BOP全等,由PA為圓的切線,得到OA垂直于AP,利用全等三角形的對應角相等及垂直的定義得到OB垂直于BP,即PB為圓O的切線;

(2)由一對直角相等,一對公共角,得出三角形AOD與三角形OAP相似,由相似得比例,列出關(guān)系式,由OA為EF的一半,等量代換即可得證.【詳解】(1)連接OB,

∵PB是⊙O的切線,

∴∠PBO=90°.

∵OA=OB,BA⊥PO于D,

∴AD=BD,∠POA=∠POB.

又∵PO=PO,

∴△PAO≌△PBO.

∴∠PAO=∠PBO=90°,

∴直線PA為⊙O的切線.(2)由(1)可知,,,,=90,,,,即,是直徑,是半徑,,,整理得;(3)是中點,是中點,是的中位線,,,,是直角三角形,在中,,,,,,則,、是半徑,,在中,,,由勾股定理得:,即,解得:或(舍去),,.【點睛】本題考查了切線的判定與性質(zhì),相似及全等三角形的判定與性質(zhì)以及銳角三角函數(shù)關(guān)系等知識,熟練掌握切線的判定與性質(zhì)是解本題的關(guān)鍵.21、(1)y=x2﹣x﹣2;(2)9;(3)Q坐標為(﹣)或(4﹣)或(2,1)或(4+,﹣).【解析】試題分析:把點代入拋物線,求出的值即可.先用待定系數(shù)法求出直線BE的解析式,進而求得直線AD的解析式,設則表示出,用配方法求出它的最大值,聯(lián)立方程求出點的坐標,最大值=,進而計算四邊形EAPD面積的最大值;分兩種情況進行討論即可.試題解析:(1)∵在拋物線上,∴解得∴拋物線的解析式為(2)過點P作軸交AD于點G,∵∴直線BE的解析式為∵AD∥BE,設直線AD的解析式為代入,可得∴直線AD的解析式為設則則∴當x=1時,PG的值最大,最大值為2,由解得或∴∴最大值=∵AD∥BE,∴∴S四邊形APDE最大=S△ADP最大+(3)①如圖3﹣1中,當時,作于T.∵∴∴∴可得②如圖3﹣2中,當時,當時,當時,Q3綜上所述,滿足條件點點Q坐標為或或或22、1平方米【解析】

設原計劃平均每天施工x平方米,則實際平均每天施工1.2x平方米,根據(jù)時間=工作總量÷工作效率結(jié)合提前11天完成任務,即可得出關(guān)于x的分式方程,解之即可得出結(jié)論.【詳解】解:設原計劃平均每天施工x平方米,則實際平均每天施工1.2x平方米,根據(jù)題意得:﹣=11,解得:x=500,經(jīng)檢驗,x=500是原方程的解,∴1.2x=1.答:實際平均每天施工1平方米.【點睛】考查了分式方程的應用,解題的關(guān)鍵是找準等量關(guān)系,正確列出分式方程.23、(1)詳見解析;(2).【解析】試題分析:(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果;(2)由(1)中樹狀圖可求得兩次摸到的球的顏色不同的情況有4種,再利用概率公式求解即可求得答案.試題解析:(1)如圖:,所有可能的結(jié)果為(白1,白2)、(白1,紅)、(白2,白1)、(白2,紅)、(紅,白1)、(紅,白2);(2)共有6種情況,兩次摸到的球的顏色不同的情況有4種,概率為.24、證明見解析.【解析】

要證明BE=CE,只要證明△EAB≌△EDC即可,根據(jù)題意目中的條件,利用矩形的性質(zhì)和等邊三角形的性質(zhì)可以得到兩個三角形全等的條件,從而可以解答本題.【詳解】證明:∵四邊形ABCD是矩形,∴AB=CD,∠BAD=∠CDA=90°,∵△ADE是等邊三角形,∴AE=DE,∠EAD=∠EDA=60°,∴∠EAD=∠EDC,在△EAB和△EDC中,EA=∴△EAB≌△EDC(SAS),∴BE=CE.【點睛】本題考查矩形的性質(zhì)、等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.25、這項工程的規(guī)定時間是83天【解析】

依據(jù)題意列分式方程即可.【詳解】設這項工程的規(guī)定時間為x天,根據(jù)題意得451解得x=83.檢驗:當x=83時,3x≠0.所以x=83是原分式方程的解.答:這項工程的規(guī)定時間是83天.【點睛】正確理解題意是解題的關(guān)鍵,注意檢驗.26、(1)每輛A型自行車的進價為2000元,每輛B型自行車的進價為1600元;(2)當購進A型自行車34輛,B型自行車66輛時獲利最大,最大利潤為13300元.【解析】

(1)設每輛B型自行車的進價為x元,則每輛A型自行車的進價為(x+10)元,根據(jù)題意列出方程,求出方程的解即可得到結(jié)果;

(2)由總利潤=單輛利潤×輛數(shù),列出y與x的關(guān)系式,利用一次函數(shù)性質(zhì)確定出所求即可.【詳解】(1)設每輛B型自行車的進價為x元,則每輛A型自行車的進價為(x+10)元,根據(jù)題意,得=,解得x=1600,經(jīng)檢驗,x=1600是原方程的解,x+10=1600+10=2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論