




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
WaveOpticsInterferenceDiffractionTwo-slitinterferencesingle-slitcircularaperturediffractiongratingGeneralprincipalofwaveinterferencein2D(or3D)PSourceSourceS1SourceS2Sphericalwaveinphaseinphaseor
outofphase??
S1S2
PAtPointPTheamplitudeofthenetoscillationatthepointP:
=2k
(inphase)(2k+1)
(outofphase)constructiveinterferencedestructiveinterference
=k
(inphase)(k-1/2)
(outofphase)Forelectromagneticwaves:differenceofopticalpath
(n2r2-n1r1)Whydoweuseopticalpath
?Geometriclengthrn=13wavelengthsn'=26wavelengths
Twicethephasechange!thephasechangeisdeterminedbytheopticalpathlengthopticalpathlength=nr
=
ropticalpathlength=n’r
=
2r
wavelengthinvacuum
Huygens’sPrincipleChristianHuygens(1629-1695)DutchphysicistStatement:
Everypointonawave-frontmaybeconsideredasourceofsecondarysphericalwaveletswhichspreadoutintheforwarddirection.Thenewwave-frontisthetangentialsurfacetoallofthesesecondarywavelets.PlanarwaveSphericalwaveThomasYoung
(13June1773
–10May1829)wasanEnglish
polymathandphysician.Young’sdouble-slitexperiment….firstestablishedtheundulatorytheoryoflight,andfirstpenetratedtheobscuritywhichhadveiledforagesthehieroglyphsofEgypt.
…
-Young’sepitaphTheRosettastoneYoung’sdouble-slitexperimentYoung’sdouble-slitexperimentm=0m=+1m=-1m=+2m=-2Theopticalpathdifference:If(forexample,D=1m,s=10-4m)Thenumbermisanintegercalledtheordernumber.Thecentralbrightfringeat(θ
=0)isassociatedwiththem=0andiscalledthezeroth-ordermaximum.Thefirstmaximumoneitherside,forwhichm=1,iscalledthefirst-ordermaximum.m=2,second-ordermaximum.......1.TheconditionsforbrightanddarkfringesTheconditionforbrightfringesatPis:
(constructive
interference)Theseequationsprovidetheangular
positionsθ
ofthefringes.m=1,first-orderminimum
m=2,second-orderminimum.......TheconditionfordarkfringesatPis:
(destructive
interference)Brightfringes
Darkfringes
thedarkfringesmeasuredfromOareatActually,wehave:D>>s
ands>>λthebrightfringesmeasuredfromOareatThedistancesbetweentheadjacentbrightfringes(darkfringes)areequal.Fringesformedbythewhitelightm=0m=+1m=-1S*ExampleWhenwhitelightisusedinthedouble-slitexperiment,wemayseespread-outspectraofdifferentcolorsatbrightfringes.Pleasefindoutthehighestorderofthebrightfringethatisnotoverlappedbyanotherbrightfringe0th(n+1)thnth1stnthbrightfringeofredoverlapswith(n+1)th
brightfringeofviolet
Onlythefirst-orderbrightfringe!ExampleAmonochromaticlightisusedinthedouble-slitexperiment.Thewavelengthis0.6um.The4thorderbrightfringeisatpointP.WhentheslitS1iscoveredbyapieceofglasswiththeindexofrefractionof1.5,thezeroth-orderbrightfringeshiftstothepointP.Findthethicknessoftheglass.4thbrightzerothbrightThebendingoflightaroundthecornersofanobstacleorapertureintotheregionofgeometricalshadowoftheobstacle.PoissonspotSmallcircularapertureDiffraction“thebendingoflightaroundanobstacle”Geometricaloptics(nodiffraction)waveoptics(diffraction)*SscreenobstacleFraunhoferDiffractionIfthereisnodiffraction,whatwillyouseeonthescreen?fOP
Opticallensdoesnotcausedifferenceonopticalpathlength(OPL)123123
DiffractionaftertheslitfOPAbB
C*SLightfromentireslitarrivesatO
inphase.--centralbrightband.lightintensityatPisdeterminedbytheopticalpathdifferencebetweenthetworaysemittedfromtheedgesoftheslit(AandB).diffractionangle.2
2
2
ABb
C1.Drawaseriesofparallelplanes
todivide
BC(bsin
)intoseveralshortsegmentsofequallength/2,andsimultaneouslydividetheslitintoseveralnarrowstripsofequalwidth.2.lightraysoftwoadjacentstripswillcancelouteachotherduetothepathdifferenceof/2.-destructiveinterferenceoccurs.11’22’33’Whatkindofinterferencewillhappenbetweenrays1and1’?b1′2BAHalf-wavezone12′λ/2
=bsin=2×
/2
Whatwillhappenifthereisonlytwosuchstrips?Darkfringeatangle
thatsatisfiessin=/b
Darkfringe!
howabout4,6,8…strips?howabout3,5,7…strips?Comparewithdouble-slit?2
2
2
ABa
C1I/I0
/b-(
/b)2(
/b)-2(
/b)0sin
IntensityofFringes
or
………1I/I0
/b-(
/b)2(
/b)-2(
/b)0sin
IntensityofFringesThewidthsofallnonzeroorderbrightfringesareequal.Thewidthofthecentralbrightfringeistwotimesofthewidthofotherbrightfringes.Theangularwidthofcentralbrightfringe:Theangularwidthofotherordersbrightfringe:Smallangleapproximationssin
;tg
Comparisonbetweendouble-slitandsingle-slitpatternsCentralbrightfringewidthdouble-slitpatternbrightdarksingle-slitpatterndarkbrightcenter
DiffractionSpectrumFresnelsingleslitdiffraction(Assumethewavelengthis600nm)Diffraction:CircularApertureS*Fraunhoferdiffractionset-upTheangularradiusofthefirstdarkring:aperturediameterangleinradiansAirydiskAngularResolutionWhatisthesmallestangulardistancebetweentwoobjects,sothatwecandistinguishthem?(Resolution)Rayleigh’sCriterionforResolutionTwopointsourcesareregardedasjustresolvedwhentheprincipaldiffractionmaximumofoneimagecoincideswiththefirstminimumoftheother.resolvedcriticalsituation-justresolvedcan‘tdistinguishthethem....ResolutionPower(minimumangletoberesolved)Increasingthediameteroftheaperturemillimetercentimeter-decimeter2metersUsingashorterwavelengthvioletlight,ultraviolet,X-ray,electrons(matterwave)TheDiffractionGratingA
diffractiongrating
isanopticalcomponentwithaperiodicstructure,whichsplitsand
diffracts
lightintoseveralbeamstravellingindifferentdirections.
abSL1LensL2GratingFraunhoferdiffractionset-upYIGratingLensViewingScreenb,thedistancebetweenneighboringslits.a,thewidthofafineslitd,thegratingconstantSupposethegratinghasNslitsinlengthl,thendloPfGL
dsin
d
Allthelightraystravellingattheangle
willbeconvergedatpointP–onthefocalplane,alsotheviewingscreen.BrightnessatP–thesuperpositionofallthelightsN-slitinterference!InterferenceofmanysingleslitsG
dsin
d
TheopticalpathdifferencebetweenwavesfromtwoadjacentslitsisequaltoThecorrespondingphasedifferenceisEachslitactsasasourceofwave,andtheyareinphaseattheslits.Therefore,theresultantlightatPisthesuperpositionofNharmonicoscillations(Efield&Bfield)withsamefrequencyandsameamplitude.Theirphasedifference(onebyone)is………
dsin
d
IfandA=?brightnessBrightfringesDarkfringesIfandthenA=0sin
I04-8-4(
/d)Diffractiongratingpattern(fringes)Question–N=?Darkfringes
Example:N=?IN2I0
dsin
λ12-1-2-303theintensityofeachmainbrightfringesisnotuniform!sin
0II0-2-112(
/a)IN2I0048-4-8sin
(
/d)sin
N204-8-48(
/d)envelopeSingle-slitIncreasingthenumberofslitsSingle-slitspectrumN-slitspectrumTheequationofdiffractiongrating(brightfringes)AngularpositionproportionaltothewavelengthDifferentwavelengthscanbedistinguishedathighorderbrightfrin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 代理電動車合同范例
- 借名買房合同范本
- 租賃合同通知函
- 農(nóng)村收購單車合同范例
- 農(nóng)村果園承包合同范本
- 云平臺建設(shè)合同范本
- 云南租房合同范本
- 供應(yīng)電水氣合同范本
- 水電站隧道排水孔施工方案
- 乙方裝修合同范本
- 2024-2025學(xué)年新教材高中化學(xué) 第三章 鐵 金屬材料 2.1 合金說課稿 新人教版必修1
- 《籃球防守腳步移動技術(shù) 滑步》教案
- 完整版項(xiàng)目部組織機(jī)構(gòu)圖
- 浙江省杭州市2023-2024學(xué)年七年級上學(xué)期期末考試數(shù)學(xué)試題(含答案)
- 人工智能客服機(jī)器人使用手冊
- 品牌全球化體育營銷趨勢洞察報告 2024
- 安徽省蕪湖市普通高中2025屆高考全國統(tǒng)考預(yù)測密卷物理試卷含解析
- (新版)拖拉機(jī)駕駛證科目一知識考試題庫500題(含答案)
- (人衛(wèi)版第九版?zhèn)魅静W(xué)總論(一))課件
- 工業(yè)機(jī)器人仿真與離線編程項(xiàng)目-8-KUKA-Sim-Pro-軟件的介紹及基本操作
- 第2課++生涯規(guī)劃+筑夢未來(課時2)【中職專用】中職思想政治《心理健康與職業(yè)生涯》高效課堂 (高教版基礎(chǔ)模塊)
評論
0/150
提交評論