2023屆江蘇省蘇州市實(shí)驗(yàn)中學(xué)數(shù)學(xué)高三上期末經(jīng)典試題含解析_第1頁(yè)
2023屆江蘇省蘇州市實(shí)驗(yàn)中學(xué)數(shù)學(xué)高三上期末經(jīng)典試題含解析_第2頁(yè)
2023屆江蘇省蘇州市實(shí)驗(yàn)中學(xué)數(shù)學(xué)高三上期末經(jīng)典試題含解析_第3頁(yè)
2023屆江蘇省蘇州市實(shí)驗(yàn)中學(xué)數(shù)學(xué)高三上期末經(jīng)典試題含解析_第4頁(yè)
2023屆江蘇省蘇州市實(shí)驗(yàn)中學(xué)數(shù)學(xué)高三上期末經(jīng)典試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線,F(xiàn)為拋物線的焦點(diǎn)且MN為過(guò)焦點(diǎn)的弦,若,,則的面積為()A. B. C. D.2.已知實(shí)數(shù)滿足約束條件,則的最小值為()A.-5 B.2 C.7 D.113.下列不等式正確的是()A. B.C. D.4.已知三棱錐P﹣ABC的頂點(diǎn)都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.5.陀螺是中國(guó)民間較早的娛樂(lè)工具之一,但陀螺這個(gè)名詞,直到明朝劉侗、于奕正合撰的《帝京景物略》一書(shū)中才正式出現(xiàn).如圖所示的網(wǎng)格紙中小正方形的邊長(zhǎng)均為1,粗線畫(huà)出的是一個(gè)陀螺模型的三視圖,則該陀螺模型的表面積為()A. B.C. D.6.已知是雙曲線的左右焦點(diǎn),過(guò)的直線與雙曲線的兩支分別交于兩點(diǎn)(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.7.向量,,且,則()A. B. C. D.8.設(shè)、是兩條不同的直線,、是兩個(gè)不同的平面,則的一個(gè)充分條件是()A.且 B.且 C.且 D.且9.若,則下列不等式不能成立的是()A. B. C. D.10.四人并排坐在連號(hào)的四個(gè)座位上,其中與不相鄰的所有不同的坐法種數(shù)是()A.12 B.16 C.20 D.811.設(shè)等比數(shù)列的前項(xiàng)和為,若,則的值為()A. B. C. D.12.已知三棱柱的所有棱長(zhǎng)均相等,側(cè)棱平面,過(guò)作平面與平行,設(shè)平面與平面的交線為,記直線與直線所成銳角分別為,則這三個(gè)角的大小關(guān)系為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某市高三理科學(xué)生有名,在一次調(diào)研測(cè)試中,數(shù)學(xué)成績(jī)服從正態(tài)分布,已知,若按成績(jī)分層抽樣的方式取份試卷進(jìn)行分析,則應(yīng)從分以上的試卷中抽取的份數(shù)為_(kāi)_________.14.從甲、乙等8名志愿者中選5人參加周一到周五的社區(qū)服務(wù),每天安排一人,每人只參加一天.若要求甲、乙兩人至少選一人參加,且當(dāng)甲、乙兩人都參加時(shí),他們參加社區(qū)服務(wù)的日期不相鄰,那么不同的安排種數(shù)為_(kāi)_____________.(用數(shù)字作答)15.三棱錐中,點(diǎn)是斜邊上一點(diǎn).給出下列四個(gè)命題:①若平面,則三棱錐的四個(gè)面都是直角三角形;②若,,,平面,則三棱錐的外接球體積為;③若,,,在平面上的射影是內(nèi)心,則三棱錐的體積為2;④若,,,平面,則直線與平面所成的最大角為.其中正確命題的序號(hào)是__________.(把你認(rèn)為正確命題的序號(hào)都填上)16.已知兩個(gè)單位向量滿足,則向量與的夾角為_(kāi)____________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為(為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程;(2)設(shè)和交點(diǎn)的交點(diǎn)為,求的面積.18.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)在曲線上,點(diǎn)在曲線上,且為正三角形.(1)求點(diǎn),的極坐標(biāo);(2)若點(diǎn)為曲線上的動(dòng)點(diǎn),為線段的中點(diǎn),求的最大值.19.(12分)在中,、、分別是角、、的對(duì)邊,且.(1)求角的值;(2)若,且為銳角三角形,求的取值范圍.20.(12分)已知橢圓的左、右焦點(diǎn)分別為、,點(diǎn)在橢圓上,且.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)直線與橢圓相交于、兩點(diǎn),與圓相交于、兩點(diǎn),求的取值范圍.21.(12分)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,.(1)求cosC;(2)若b=7,D是BC邊上的點(diǎn),且△ACD的面積為,求sin∠ADB.22.(10分)已知橢圓,上、下頂點(diǎn)分別是、,上、下焦點(diǎn)分別是、,焦距為,點(diǎn)在橢圓上.(1)求橢圓的方程;(2)若為橢圓上異于、的動(dòng)點(diǎn),過(guò)作與軸平行的直線,直線與交于點(diǎn),直線與直線交于點(diǎn),判斷是否為定值,說(shuō)明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

根據(jù)可知,再利用拋物線的焦半徑公式以及三角形面積公式求解即可.【詳解】由題意可知拋物線方程為,設(shè)點(diǎn)點(diǎn),則由拋物線定義知,,則.由得,則.又MN為過(guò)焦點(diǎn)的弦,所以,則,所以.故選:A【點(diǎn)睛】本題考查拋物線的方程應(yīng)用,同時(shí)也考查了焦半徑公式等.屬于中檔題.2、A【解析】

根據(jù)約束條件畫(huà)出可行域,再將目標(biāo)函數(shù)化成斜截式,找到截距的最小值.【詳解】由約束條件,畫(huà)出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線,為在軸的截距,最小的時(shí)候?yàn)檫^(guò)點(diǎn)的時(shí)候,解得所以,此時(shí)故選A項(xiàng)【點(diǎn)睛】本題考查線性規(guī)劃求一次相加的目標(biāo)函數(shù),屬于常規(guī)題型,是簡(jiǎn)單題.3、D【解析】

根據(jù),利用排除法,即可求解.【詳解】由,可排除A、B、C選項(xiàng),又由,所以.故選D.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),以及對(duì)數(shù)的比較大小問(wèn)題,其中解答熟記三角函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.4、D【解析】

由題意畫(huà)出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過(guò)求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【詳解】如圖;設(shè)AB的中點(diǎn)為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設(shè)外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【點(diǎn)睛】本題考查多面體外接球表面積的求法,考查數(shù)形結(jié)合的解題思想方法,考查思維能力與計(jì)算能力,屬于中檔題.5、C【解析】

根據(jù)三視圖可知,該幾何體是由兩個(gè)圓錐和一個(gè)圓柱構(gòu)成,由此計(jì)算出陀螺的表面積.【詳解】最上面圓錐的母線長(zhǎng)為,底面周長(zhǎng)為,側(cè)面積為,下面圓錐的母線長(zhǎng)為,底面周長(zhǎng)為,側(cè)面積為,沒(méi)被擋住的部分面積為,中間圓柱的側(cè)面積為.故表面積為,故選C.【點(diǎn)睛】本小題主要考查中國(guó)古代數(shù)學(xué)文化,考查三視圖還原為原圖,考查幾何體表面積的計(jì)算,屬于基礎(chǔ)題.6、D【解析】

根據(jù)雙曲線的定義可得的邊長(zhǎng)為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線的定義把到兩焦點(diǎn)距離用表示,然后用余弦定理建立關(guān)系式.7、D【解析】

根據(jù)向量平行的坐標(biāo)運(yùn)算以及誘導(dǎo)公式,即可得出答案.【詳解】故選:D【點(diǎn)睛】本題主要考查了由向量平行求參數(shù)以及誘導(dǎo)公式的應(yīng)用,屬于中檔題.8、B【解析】由且可得,故選B.9、B【解析】

根據(jù)不等式的性質(zhì)對(duì)選項(xiàng)逐一判斷即可.【詳解】選項(xiàng)A:由于,即,,所以,所以,所以成立;選項(xiàng)B:由于,即,所以,所以,所以不成立;選項(xiàng)C:由于,所以,所以,所以成立;選項(xiàng)D:由于,所以,所以,所以,所以成立.故選:B.【點(diǎn)睛】本題考查不等關(guān)系和不等式,屬于基礎(chǔ)題.10、A【解析】

先將除A,B以外的兩人先排,再將A,B在3個(gè)空位置里進(jìn)行插空,再相乘得答案.【詳解】先將除A,B以外的兩人先排,有種;再將A,B在3個(gè)空位置里進(jìn)行插空,有種,所以共有種.故選:A【點(diǎn)睛】本題考查排列中不相鄰問(wèn)題,常用插空法,屬于基礎(chǔ)題.11、C【解析】

求得等比數(shù)列的公比,然后利用等比數(shù)列的求和公式可求得的值.【詳解】設(shè)等比數(shù)列的公比為,,,,因此,.故選:C.【點(diǎn)睛】本題考查等比數(shù)列求和公式的應(yīng)用,解答的關(guān)鍵就是求出等比數(shù)列的公比,考查計(jì)算能力,屬于基礎(chǔ)題.12、B【解析】

利用圖形作出空間中兩直線所成的角,然后利用余弦定理求解即可.【詳解】如圖,,設(shè)為的中點(diǎn),為的中點(diǎn),由圖可知過(guò)且與平行的平面為平面,所以直線即為直線,由題易知,的補(bǔ)角,分別為,設(shè)三棱柱的棱長(zhǎng)為2,在中,,;在中,,;在中,,,.故選:B【點(diǎn)睛】本題主要考查了空間中兩直線所成角的計(jì)算,考查了學(xué)生的作圖,用圖能力,體現(xiàn)了學(xué)生直觀想象的核心素養(yǎng).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題意結(jié)合正態(tài)分布曲線可得分以上的概率,乘以可得.【詳解】解:,所以應(yīng)從分以上的試卷中抽取份.故答案為:.【點(diǎn)睛】本題考查正態(tài)分布曲線,屬于基礎(chǔ)題.14、5040.【解析】分兩類,一類是甲乙都參加,另一類是甲乙中選一人,方法數(shù)為。填5040.【點(diǎn)睛】利用排列組合計(jì)數(shù)時(shí),關(guān)鍵是正確進(jìn)行分類和分步,分類時(shí)要注意不重不漏.在本題中,甲與乙是兩個(gè)特殊元素,對(duì)于特殊元素“優(yōu)先法”,所以有了分類。本題還涉及不相鄰問(wèn)題,采用“插空法”。15、①②③【解析】

對(duì)①,由線面平行的性質(zhì)可判斷正確;對(duì)②,三棱錐外接球可看作正方體的外接球,結(jié)合外接球半徑公式即可求解;對(duì)③,結(jié)合題意作出圖形,由勾股定理和內(nèi)接圓對(duì)應(yīng)面積公式求出錐體的高,則可求解;對(duì)④,由動(dòng)點(diǎn)分析可知,當(dāng)點(diǎn)與點(diǎn)重合時(shí),直線與平面所成的角最大,結(jié)合幾何關(guān)系可判斷錯(cuò)誤;【詳解】對(duì)于①,因?yàn)槠矫?,所以,,,又,所以平面,所以,故四個(gè)面都是直角三角形,∴①正確;對(duì)于②,若,,,平面,∴三棱錐的外接球可以看作棱長(zhǎng)為4的正方體的外接球,∴,,∴體積為,∴②正確;對(duì)于③,設(shè)內(nèi)心是,則平面,連接,則有,又內(nèi)切圓半徑,所以,,故,∴三棱錐的體積為,∴③正確;對(duì)于④,∵若,平面,則直線與平面所成的角最大時(shí),點(diǎn)與點(diǎn)重合,在中,,∴,即直線與平面所成的最大角為,∴④不正確,故答案為:①②③.【點(diǎn)睛】本題考查立體幾何基本關(guān)系的應(yīng)用,線面垂直的性質(zhì)及判定、錐體體積、外接球半徑求解,線面角的求解,屬于中檔題16、【解析】

由得,即得解.【詳解】由題意可知,則.解得,所以,向量與的夾角為.故答案為:【點(diǎn)睛】本題主要考查平面向量的數(shù)量積的計(jì)算和夾角的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】

(1)先將曲線的參數(shù)方程化為普通方程,再將普通方程化為極坐標(biāo)方程即可.(2)將和的極坐標(biāo)方程聯(lián)立,求得兩個(gè)曲線交點(diǎn)的極坐標(biāo),即可由極坐標(biāo)的含義求得的面積.【詳解】(1)曲線的參數(shù)方程為(α為參數(shù)),消去參數(shù)的的直角坐標(biāo)方程為.所以的極坐標(biāo)方程為(2)解方程組,得到.所以,則或().當(dāng)()時(shí),,當(dāng)()時(shí),.所以和的交點(diǎn)極坐標(biāo)為:,.所以.故的面積為.【點(diǎn)睛】本題考查了參數(shù)方程與普通方程的轉(zhuǎn)化,直角坐標(biāo)方程與極坐標(biāo)的轉(zhuǎn)化,利用極坐標(biāo)求三角形面積,屬于中檔題.18、(1),;(2).【解析】

(1)利用極坐標(biāo)和直角坐標(biāo)的互化公式,即得解;(2)設(shè)點(diǎn)的直角坐標(biāo)為,則點(diǎn)的直角坐標(biāo)為.將此代入曲線的方程,可得點(diǎn)在以為圓心,為半徑的圓上,所以的最大值為,即得解.【詳解】(1)因?yàn)辄c(diǎn)在曲線上,為正三角形,所以點(diǎn)在曲線上.又因?yàn)辄c(diǎn)在曲線上,所以點(diǎn)的極坐標(biāo)是,從而,點(diǎn)的極坐標(biāo)是.(2)由(1)可知,點(diǎn)的直角坐標(biāo)為,B的直角坐標(biāo)為設(shè)點(diǎn)的直角坐標(biāo)為,則點(diǎn)的直角坐標(biāo)為.將此代入曲線的方程,有即點(diǎn)在以為圓心,為半徑的圓上.,所以的最大值為.【點(diǎn)睛】本題考查了極坐標(biāo)和參數(shù)方程綜合,考查了極坐標(biāo)和直角坐標(biāo)互化,參數(shù)方程的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.19、(1).(2).【解析】

(1)根據(jù)題意,由余弦定理求得,即可求解C角的值;(2)由正弦定理和三角恒等變換的公式,化簡(jiǎn)得到,再根據(jù)為銳角三角形,求得,利用三角函數(shù)的圖象與性質(zhì),即可求解.【詳解】(1)由題意知,∴,由余弦定理可知,,又∵,∴.(2)由正弦定理可知,,即∴,又∵為銳角三角形,∴,即,則,所以,綜上的取值范圍為.【點(diǎn)睛】本題主要考查了利用正弦定理和三角函數(shù)的恒等變換求解三角形問(wèn)題,對(duì)于解三角形問(wèn)題,通常利用正弦定理進(jìn)行“邊轉(zhuǎn)角”尋求角的關(guān)系,利用“角轉(zhuǎn)邊”尋求邊的關(guān)系,利用余弦定理借助三邊關(guān)系求角,利用兩角和差公式及二倍角公式求三角函數(shù)值.利用正、余弦定理解三角形問(wèn)題是高考高頻考點(diǎn),經(jīng)常利用三角形內(nèi)角和定理,三角形面積公式,結(jié)合正、余弦定理解題.20、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用勾股定理結(jié)合條件求得和,利用橢圓的定義求得的值,進(jìn)而可得出,則橢圓的標(biāo)準(zhǔn)方程可求;(Ⅱ)設(shè)點(diǎn)、,將直線的方程與橢圓的方程聯(lián)立,利用韋達(dá)定理與弦長(zhǎng)公式求出,利用幾何法求得直線截圓所得弦長(zhǎng),可得出關(guān)于的函數(shù)表達(dá)式,利用不等式的性質(zhì)可求得的取值范圍.【詳解】(Ⅰ)在橢圓上,,,,,,,又,,,,橢圓的標(biāo)準(zhǔn)方程為;(Ⅱ)設(shè)點(diǎn)、,聯(lián)立消去,得,,則,,設(shè)圓的圓心到直線的距離為,則.,,,,的取值范圍為.【點(diǎn)睛】本題考查橢圓方程的求解,同時(shí)也考查了橢圓中弦長(zhǎng)之積的取值范圍的求解,涉及韋達(dá)定理與弦長(zhǎng)公式的應(yīng)用,考查計(jì)算能力,屬于中等題.21、(1);(2).【解析】

(1)根據(jù)誘導(dǎo)公式和二倍角公式,將已知等式化為角關(guān)系式,求出,再由二倍角余弦公式,即可求解;(2)在中,根據(jù)面積公式求出長(zhǎng),根據(jù)余弦定理求出,由正弦定理求出,即可求出結(jié)論.【詳解】(1),,;(2)在中,由(1)得,,由余弦定理得,,在中,,.【點(diǎn)睛】本題考查三角恒等變換求值、面積公式、余弦定理、正弦定理解三角形,考

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論