江蘇省南京市第二十九中高三第二次診斷性檢測新高考數(shù)學試卷及答案解析_第1頁
江蘇省南京市第二十九中高三第二次診斷性檢測新高考數(shù)學試卷及答案解析_第2頁
江蘇省南京市第二十九中高三第二次診斷性檢測新高考數(shù)學試卷及答案解析_第3頁
江蘇省南京市第二十九中高三第二次診斷性檢測新高考數(shù)學試卷及答案解析_第4頁
江蘇省南京市第二十九中高三第二次診斷性檢測新高考數(shù)學試卷及答案解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇省南京市第二十九中高三第二次診斷性檢測新高考數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:①以為直徑的圓與拋物線準線相離;②直線與直線的斜率乘積為;③設過點,,的圓的圓心坐標為,半徑為,則.其中,所有正確判斷的序號是()A.①② B.①③ C.②③ D.①②③2.已知,,那么是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.已知角的終邊與單位圓交于點,則等于()A. B. C. D.4.圓心為且和軸相切的圓的方程是()A. B.C. D.5.造紙術、印刷術、指南針、火藥被稱為中國古代四大發(fā)明,此說法最早由英國漢學家艾約瑟提出并為后來許多中國的歷史學家所繼承,普遍認為這四種發(fā)明對中國古代的政治,經(jīng)濟,文化的發(fā)展產(chǎn)生了巨大的推動作用.某小學三年級共有學生500名,隨機抽查100名學生并提問中國古代四大發(fā)明,能說出兩種發(fā)明的有45人,能說出3種及其以上發(fā)明的有32人,據(jù)此估計該校三級的500名學生中,對四大發(fā)明只能說出一種或一種也說不出的有()A.69人 B.84人 C.108人 D.115人6.某幾何體的三視圖如圖所示,則該幾何體中的最長棱長為()A. B. C. D.7.已知平面向量滿足與的夾角為,且,則實數(shù)的值為()A. B. C. D.8.拋物線的焦點為F,點為該拋物線上的動點,若點,則的最小值為()A. B. C. D.9.對某兩名高三學生在連續(xù)9次數(shù)學測試中的成績(單位:分)進行統(tǒng)計得到折線圖,下面是關于這兩位同學的數(shù)學成績分析.①甲同學的成績折線圖具有較好的對稱性,故平均成績?yōu)?30分;②根據(jù)甲同學成績折線圖提供的數(shù)據(jù)進行統(tǒng)計,估計該同學平均成績在區(qū)間110,120內(nèi);③乙同學的數(shù)學成績與測試次號具有比較明顯的線性相關性,且為正相關;④乙同學連續(xù)九次測驗成績每一次均有明顯進步.其中正確的個數(shù)為()A.4 B.3 C.2 D.110.若函數(shù)恰有3個零點,則實數(shù)的取值范圍是()A. B. C. D.11.已知,滿足,且的最大值是最小值的4倍,則的值是()A.4 B. C. D.12.“幻方”最早記載于我國公元前500年的春秋時期《大戴禮》中.“階幻方”是由前個正整數(shù)組成的—個階方陣,其各行各列及兩條對角線所含的個數(shù)之和(簡稱幻和)相等,例如“3階幻方”的幻和為15(如圖所示).則“5階幻方”的幻和為()A.75 B.65 C.55 D.45二、填空題:本題共4小題,每小題5分,共20分。13.已知下列命題:①命題“?x0∈R,”的否定是“?x∈R,x2+1<3x”;②已知p,q為兩個命題,若“p∨q”為假命題,則“”為真命題;③“a>2”是“a>5”的充分不必要條件;④“若xy=0,則x=0且y=0”的逆否命題為真命題.其中所有真命題的序號是________.14.某次足球比賽中,,,,四支球隊進入了半決賽.半決賽中,對陣,對陣,獲勝的兩隊進入決賽爭奪冠軍,失利的兩隊爭奪季軍.已知他們之間相互獲勝的概率如下表所示.獲勝概率—0.40.30.8獲勝概率0.6—0.70.5獲勝概率0.70.3—0.3獲勝概率0.20.50.7—則隊獲得冠軍的概率為______.15.在棱長為6的正方體中,是的中點,點是面,所在平面內(nèi)的動點,且滿足,則三棱錐的體積的最大值是__________.16.給出下列等式:,,,…請從中歸納出第個等式:______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)萬眾矚目的第14屆全國冬季運動運會(簡稱“十四冬”)于2020年2月16日在呼倫貝爾市盛大開幕,期間正值我市學校放寒假,寒假結束后,某校工會對全校100名教職工在“十四冬”期間每天收看比賽轉(zhuǎn)播的時間作了一次調(diào)查,得到如圖頻數(shù)分布直方圖:(1)若將每天收看比賽轉(zhuǎn)播時間不低于3小時的教職工定義為“冰雪迷”,否則定義為“非冰雪迷”,請根據(jù)頻率分布直方圖補全列聯(lián)表;并判斷能否有的把握認為該校教職工是否為“冰雪迷”與“性別”有關;(2)在全?!氨┟浴敝邪葱詣e分層抽樣抽取6名,再從這6名“冰雪迷”中選取2名作冰雪運動知識講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,18.(12分)如圖所示,四棱柱中,底面為梯形,,,,,,.(1)求證:;(2)若平面平面,求二面角的余弦值.19.(12分)某中學為研究學生的身體素質(zhì)與體育鍛煉時間的關系,對該校名高三學生平均每天體育鍛煉時間進行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)將學生日均體育鍛煉時間在的學生評價為“鍛煉達標”.(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表:并通過計算判斷,是否能在犯錯誤的概率不超過的前提下認為“鍛煉達標”與性別有關?(2)在“鍛煉達標”的學生中,按男女用分層抽樣方法抽出人,進行體育鍛煉體會交流.(i)求這人中,男生、女生各有多少人?(ii)從參加體會交流的人中,隨機選出人發(fā)言,記這人中女生的人數(shù)為,求的分布列和數(shù)學期望.參考公式:,其中.臨界值表:0.100.050.0250.01002.7063.8415.0246.63520.(12分)已知公比為正數(shù)的等比數(shù)列的前項和為,且,.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.21.(12分)已知函數(shù).(1)當a=2時,求不等式的解集;(2)設函數(shù).當時,,求的取值范圍.22.(10分)在最新公布的湖南新高考方案中,“”模式要求學生在語數(shù)外3門全國統(tǒng)考科目之外,在歷史和物理2門科目中必選且只選1門,再從化學、生物、地理、政治4門科目中任選2門,后三科的高考成績按新的規(guī)則轉(zhuǎn)換后計入高考總分.相應地,高校在招生時可對特定專業(yè)設置具體的選修科目要求.雙超中學高一年級有學生1200人,現(xiàn)從中隨機抽取40人進行選科情況調(diào)查,用數(shù)字1~6分別依次代表歷史、物理、化學、生物、地理、政治6科,得到如下的統(tǒng)計表:序號選科情況序號選科情況序號選科情況序號選科情況11341123621156312352235122342223532236323513145232453323541451413524235341355156152362525635156624516236261563623672561715627134371568235182362823538134923519145292463923510236202353015640245(1)雙超中學規(guī)定:每個選修班最多編排50人且盡量滿額編班,每位老師執(zhí)教2個選修班(當且僅當一門科目的選課班級總數(shù)為奇數(shù)時,允許這門科目的1位老師只教1個班).已知雙超中學高一年級現(xiàn)有化學、生物科目教師每科各8人,用樣本估計總體,則化學、生物兩科的教師人數(shù)是否需要調(diào)整?如果需要調(diào)整,各需增加或減少多少人?(2)請創(chuàng)建列聯(lián)表,運用獨立性檢驗的知識進行分析,探究是否有的把握判斷學生“選擇化學科目”與“選擇物理科目”有關.附:0.1000.0500.0100.0012.7063.8416.63510.828(3)某高校在其熱門人文專業(yè)的招生簡章中明確要求,僅允許選修了歷史科目,且在政治和地理2門中至少選修了1門的考生報名.現(xiàn)從雙超中學高一新生中隨機抽取3人,設具備高校專業(yè)報名資格的人數(shù)為,用樣本的頻率估計概率,求的分布列與期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

對于①,利用拋物線的定義,利用可判斷;對于②,設直線的方程為,與拋物線聯(lián)立,用坐標表示直線與直線的斜率乘積,即可判斷;對于③,將代入拋物線的方程可得,,從而,,利用韋達定理可得,再由,可用m表示,線段的中垂線與軸的交點(即圓心)橫坐標為,可得a,即可判斷.【詳解】如圖,設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設,到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,則.所以①正確.由題意可設直線的方程為,代入拋物線的方程,有.設點,的坐標分別為,,則,.所以.則直線與直線的斜率乘積為.所以②正確.將代入拋物線的方程可得,,從而,.根據(jù)拋物線的對稱性可知,,兩點關于軸對稱,所以過點,,的圓的圓心在軸上.由上,有,,則.所以,線段的中垂線與軸的交點(即圓心)橫坐標為,所以.于是,,代入,,得,所以.所以③正確.故選:D【點睛】本題考查了拋物線的性質(zhì)綜合,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結合,數(shù)學運算的能力,屬于較難題.2、B【解析】

由,可得,解出即可判斷出結論.【詳解】解:因為,且.,解得.是的必要不充分條件.故選:.【點睛】本題考查了向量數(shù)量積運算性質(zhì)、三角函數(shù)求值、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題.3、B【解析】

先由三角函數(shù)的定義求出,再由二倍角公式可求.【詳解】解:角的終邊與單位圓交于點,,故選:B【點睛】考查三角函數(shù)的定義和二倍角公式,是基礎題.4、A【解析】

求出所求圓的半徑,可得出所求圓的標準方程.【詳解】圓心為且和軸相切的圓的半徑為,因此,所求圓的方程為.故選:A.【點睛】本題考查圓的方程的求解,一般求出圓的圓心和半徑,考查計算能力,屬于基礎題.5、D【解析】

先求得名學生中,只能說出一種或一種也說不出的人數(shù),由此利用比例,求得名學生中對四大發(fā)明只能說出一種或一種也說不出的人數(shù).【詳解】在這100名學生中,只能說出一種或一種也說不出的有人,設對四大發(fā)明只能說出一種或一種也說不出的有人,則,解得人.故選:D【點睛】本小題主要考查利用樣本估計總體,屬于基礎題.6、C【解析】

根據(jù)三視圖,可得該幾何體是一個三棱錐,并且平面SAC平面ABC,,過S作,連接BD,,再求得其它的棱長比較下結論.【詳解】如圖所示:由三視圖得:該幾何體是一個三棱錐,且平面SAC平面ABC,,過S作,連接BD,則,所以,,,,該幾何體中的最長棱長為.故選:C【點睛】本題主要考查三視圖還原幾何體,還考查了空間想象和運算求解的能力,屬于中檔題.7、D【解析】

由已知可得,結合向量數(shù)量積的運算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.【點睛】本題考查向量的數(shù)量積運算,向量垂直的應用,考查計算求解能力,屬于基礎題.8、B【解析】

通過拋物線的定義,轉(zhuǎn)化,要使有最小值,只需最大即可,作出切線方程即可求出比值的最小值.【詳解】解:由題意可知,拋物線的準線方程為,,過作垂直直線于,由拋物線的定義可知,連結,當是拋物線的切線時,有最小值,則最大,即最大,就是直線的斜率最大,設在的方程為:,所以,解得:,所以,解得,所以,.故選:.【點睛】本題考查拋物線的基本性質(zhì),直線與拋物線的位置關系,轉(zhuǎn)化思想的應用,屬于基礎題.9、C【解析】

利用圖形,判斷折線圖平均分以及線性相關性,成績的比較,說明正誤即可.【詳解】①甲同學的成績折線圖具有較好的對稱性,最高130分,平均成績?yōu)榈陀?30分,①錯誤;②根據(jù)甲同學成績折線圖提供的數(shù)據(jù)進行統(tǒng)計,估計該同學平均成績在區(qū)間[110,120]內(nèi),②正確;③乙同學的數(shù)學成績與測試次號具有比較明顯的線性相關性,且為正相關,③正確;④乙同學在這連續(xù)九次測驗中第四次、第七次成績較上一次成績有退步,故④不正確.故選:C.【點睛】本題考查折線圖的應用,線性相關以及平均分的求解,考查轉(zhuǎn)化思想以及計算能力,屬于基礎題.10、B【解析】

求導函數(shù),求出函數(shù)的極值,利用函數(shù)恰有三個零點,即可求實數(shù)的取值范圍.【詳解】函數(shù)的導數(shù)為,令,則或,上單調(diào)遞減,上單調(diào)遞增,所以0或是函數(shù)y的極值點,函數(shù)的極值為:,函數(shù)恰有三個零點,則實數(shù)的取值范圍是:.故選B.【點睛】該題考查的是有關結合函數(shù)零點個數(shù),來確定參數(shù)的取值范圍的問題,在解題的過程中,注意應用導數(shù)研究函數(shù)圖象的走向,利用數(shù)形結合思想,轉(zhuǎn)化為函數(shù)圖象間交點個數(shù)的問題,難度不大.11、D【解析】試題分析:先畫出可行域如圖:由,得,由,得,當直線過點時,目標函數(shù)取得最大值,最大值為3;當直線過點時,目標函數(shù)取得最小值,最小值為3a;由條件得,所以,故選D.考點:線性規(guī)劃.12、B【解析】

計算的和,然后除以,得到“5階幻方”的幻和.【詳解】依題意“5階幻方”的幻和為,故選B.【點睛】本小題主要考查合情推理與演繹推理,考查等差數(shù)列前項和公式,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、②【解析】命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”,故①錯誤;“p∨q”為假命題說明p假q假,則(p)∧(q)為真命題,故②正確;a>5?a>2,但a>2?/a>5,故“a>2”是“a>5”的必要不充分條件,故③錯誤;因為“若xy=0,則x=0或y=0”,所以原命題為假命題,故其逆否命題也為假命題,故④錯誤.14、0.18【解析】

根據(jù)表中信息,可得勝C的概率;分類討論B或D進入決賽,再計算A勝B或A勝C的概率即可求解.【詳解】由表中信息可知,勝C的概率為;若B進入決賽,B勝D的概率為,則A勝B的概率為;若D進入決賽,D勝B的概率為,則A勝D的概率為;由相應的概率公式知,則A獲得冠軍的概率為.故答案為:0.18【點睛】本題考查了獨立事件的概率應用,互斥事件的概率求法,屬于基礎題.15、【解析】

根據(jù)與相似,,過作于,利用體積公式求解OP最值,根據(jù)勾股定理得出,,利用函數(shù)單調(diào)性判斷求解即可.【詳解】∵在棱長為6的正方體中,是的中點,點是面所在平面內(nèi)的動點,且滿足,又,∴與相似∴,即,過作于,設,,∴,化簡得:,,根據(jù)函數(shù)單調(diào)性判斷,時,取得最大值36,,在正方體中平面.三棱錐體積的最大值為【點睛】本題考查三角形相似,幾何體體積以及函數(shù)單調(diào)性的綜合應用,難度一般.16、【解析】

通過已知的三個等式,找出規(guī)律,歸納出第個等式即可.【詳解】解:因為:,,,等式的右邊系數(shù)是2,且角是等比數(shù)列,公比為,則角滿足:第個等式中的角,所以;故答案為:.【點睛】本題主要考查歸納推理,注意已知表達式的特征是解題的關鍵,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)列聯(lián)表見解析,有把握;(2)分布列見解析,.【解析】

(1)根據(jù)頻率分布直方圖補全列聯(lián)表,求出,從而有的把握認為該校教職工是否為“冰雪迷”與“性別”有關.(2)在全?!氨┟浴敝邪葱詣e分層抽樣抽取6名,則抽中男教工:人,抽中女教工:人,從這6名“冰雪迷”中選取2名作冰雪運動知識講座.記其中女職工的人數(shù)為,則的可能取值為0,1,2,分別求出相應的概率,由此能求出的分布列和數(shù)學期望.【詳解】解:(1)由題意得下表:男女合計冰雪迷402060非冰雪迷202040合計6040100的觀測值為所以有的把握認為該校教職工是“冰雪迷”與“性別”有關.(2)由題意知抽取的6名“冰雪迷”中有4名男職工,2名女職工,所以的可能取值為0,1,2.且,,,所以的分布列為012【點睛】本題考查獨立性檢驗的應用,考查離散型隨機變量的分布列、數(shù)學期望的求法,考查古典概型、排列組合、頻率分布直方圖的性質(zhì)等基礎知識,考查運算求解能力,屬于中檔題.18、(1)證明見解析(2)【解析】

(1)取中點為,連接,,,,根據(jù)線段關系可證明為等邊三角形,即可得;由為等邊三角形,可得,從而由線面垂直判斷定理可證明平面,即可證明.(2)以為原點,,,為,,軸建立空間直角坐標系,寫出各個點的坐標,并求得平面和平面的法向量,即可由法向量法求得二面角的余弦值.【詳解】(1)證明:取中點為,連接,,,如下圖所示:因為,,,所以,故為等邊三角形,則.連接,因為,,所以為等邊三角形,則.又,所以平面.因為平面,所以.(2)由(1)知,因為平面平面,平面,所以平面,以為原點,,,為,,軸建立如圖所示的空間直角坐標系,易求,則,,,,則,,.設平面的法向量,則即令,則,,故.設平面的法向量,則則令,則,,故,所以.由圖可知,二面角為鈍二面角角,所以二面角的余弦值為.【點睛】本題考查線面垂直的判定,由線面垂直判定線線垂直,由空間向量法求平面與平面形成二面角的大小,屬于中檔題.19、(1)能;(2)(i)男生有人,女生有人;(ii),分布列見解析.【解析】

(1)根據(jù)所給數(shù)據(jù)可完成列聯(lián)表.由總人數(shù)及女生人數(shù)得男生人數(shù),由表格得達標人數(shù),從而得男生中達標人數(shù),這樣不達標人數(shù)隨之而得,然后計算可得結論;(2)由達標人數(shù)中男女生人數(shù)比為可得抽取的人數(shù),總共選2人,女生有4人,的可能值為0,1,2,分別計算概率得分布列,再由期望公式可計算出期望.【詳解】(1)列出列聯(lián)表,,所以在犯錯誤的概率不超過的前提下能判斷“課外體育達標”與性別有關.(2)(i)在“鍛煉達標”的學生中,男女生人數(shù)比為,用分層抽樣方法抽出人,男生有人,女生有人.(ii)從參加體會交流的人中,隨機選出人發(fā)言,人中女生的人數(shù)為,則的可能值為,,,則,,,可得的分布列為:可得數(shù)學期望.【點睛】本題考查列聯(lián)表與獨立性檢驗,考查分層抽樣,隨機變量的概率分布列和期望.主要考查學生的數(shù)據(jù)處理能力,運算求解能力,屬于中檔題.20、(1)(2)【解析】

(1)判斷公比不為1,運用等比數(shù)列的求和公式,解方程可得公比,進而得到所求通項公式;(2)求得,運用數(shù)列的錯位相減法求和,以及等比數(shù)列的求和公式,計算可得所求和.【詳解】解:(1)設公比為正數(shù)的等比數(shù)列的前項和為,且,,可得時,,不成立;當時,,即,解得(舍去),則;(2),前項和,,兩式相減可得,化簡可得.【點睛】本題考查等比數(shù)列的通項公式和求和公式的運用,考查數(shù)列的錯位相

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論