八年級期末數(shù)學(xué)試卷02【北師大版】解析版-2023-2024學(xué)年8下數(shù)學(xué)期末考點大串講_第1頁
八年級期末數(shù)學(xué)試卷02【北師大版】解析版-2023-2024學(xué)年8下數(shù)學(xué)期末考點大串講_第2頁
八年級期末數(shù)學(xué)試卷02【北師大版】解析版-2023-2024學(xué)年8下數(shù)學(xué)期末考點大串講_第3頁
八年級期末數(shù)學(xué)試卷02【北師大版】解析版-2023-2024學(xué)年8下數(shù)學(xué)期末考點大串講_第4頁
八年級期末數(shù)學(xué)試卷02【北師大版】解析版-2023-2024學(xué)年8下數(shù)學(xué)期末考點大串講_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年八年級(下)期末數(shù)學(xué)試卷(2)

【北師大版】(考試時間:120分鐘試卷滿分:100分)考卷信息:本卷試題共23題,單選12題,填空4題,解答7題,滿分100分,限時120分鐘,本卷題型針對性較高,覆蓋面題有深度,可衡量學(xué)生掌握本冊內(nèi)容的具體情況!

單項選擇題(本題共12小題,每小題3分,共36分。在每小題給出的四個選項中,只有一項是符合題目要求的。)1.下列各式中,分式有()個.A.1個 B.2個 C.3個 D.4個【答案】B【解答】解:是分式的有,故選:B.2.航天員的宇航服加入了氣凝膠可以抵御太空的高溫.氣凝膠,是一種具有納米多孔結(jié)構(gòu)的新型材料,氣凝膠顆粒尺寸通常小于0.00000002m,數(shù)據(jù)0.00000002用科學(xué)記數(shù)法表示為()A.2×10﹣8 B.2×10﹣9 C.0.2×10﹣8 D.2×108【答案】A【解答】解:0.00000002=2×10﹣8,故選:A.3.在一次體檢中,測得八(1)班第一組同學(xué)的身高(單位:厘米)分別為:158、165、168、175、162、170、166、170,該組同學(xué)身高的中位數(shù)是()A.166厘米 B.167厘米 C.168厘米 D.169厘米【答案】B【解答】解:將這組數(shù)據(jù)從小到大排列為:158、162、165、166、168、170、170、175,中間的數(shù)分別為166、168,所以中位數(shù)是=167(厘米).故選:B.4.如圖,?OABC的頂點O(0,0),A(4,0),點E(5,1)是邊AB的中點,則對角線AC,OB的交點,D的坐標(biāo)為()A.(3,1) B.(4,1) C.(1,3) D.(2,1)【答案】A【解答】解:∵四邊形ABCD是平行四邊形,O(0,0),A(4,0),∴OA=4,∵點E(5,1)是邊AB的中點,則對角線AC,OB的交點是D,∴DE=2,∵點E(5,1),∴D(3,1),故選:A.5.已知x<y,則下列不等式一定成立的是()A.x+5<y+5 B.2x>2y C. D.﹣2x<﹣2y【答案】A【解答】解:A、∵x<y,∴x+5<y+5,故本選項符合題意;B、∵x<y,∴2x<2y,故本選項不符合題意;C、∵x<y,∴,故本選項不符合題意;D、∵x<y,∴﹣2x>﹣2y,故本選項不符合題意;故選:A.6.如圖所示,在平行四邊形ABCD中,對角線AC、BD交于點O,下列結(jié)論中一定成立的是()A.AC⊥BD B.OA=OC C.AC=AB D.OA=OB【答案】B【解答】解:∵四邊形ABCD是平行四邊形,∴OA=OC,AB=DC,故A、C、D錯誤,不符合題意;故選:B.7.如果把分式中的x、y同時擴大為原來的3倍,那么該分式的值()A.縮小為原來的 B.?dāng)U大為原來的3倍 C.縮小為原來的 D.不變【答案】A【解答】解:把x和y都擴大3倍后,原式為=?,約分后縮小為原來的.故選:A.8.如圖,在△ABC中,D,E分別是AB,AC的中點,AC=12,F(xiàn)是DE上一點,且DF=1,連接AF,CF,若∠AFC=90°,則BC的長度為()A.12 B.13 C.14 D.15【答案】C【解答】解:如圖,∵∠AFC=90°,E是AC的中點,∴EF=AC=6,DE=1+6=7;∵D,E分別是AB,AC的中點,∴DE為△ABC的中位線,∴BC=2DE=14,故選:C.9.如圖1,在長方形ABCD中,動點P從點A出發(fā),沿AB﹣BC﹣CD運動,至點D處停止.點P運動的路程為x,△ADP的面積為y,且y與x之間滿足的關(guān)系如圖2所示,則當(dāng)y=8時,對應(yīng)的x的值是()A.4 B.4或12 C.4或16 D.5或12【答案】B【解答】解:當(dāng)點P運動到點B處時,x=6,y=12,即AB=6,S△ABC=AD?AB=12,∴AD=4,∴BC=4,DC=6,當(dāng)點P在AB上運動時,S△ADP=AD?AP=8,∴AP=4,∴x=4,當(dāng)點P在DC上運動時,S△ADP=AD?DP=8,∴DP=4,∴x=6+4+6﹣4=12,故選:B.10.某校初二年級的同學(xué)乘坐大巴車去北京展覽館參觀“砥礪奮進的五年”大型成就展.北京展覽館距離該校12千米.1號車出發(fā)3分鐘后,2號車才出發(fā),結(jié)果兩車同時到達(dá).已知2號車的平均速度是1號車的平均速度的1.2倍,求2號車的平均速度,設(shè)1號車的平均速度為xkm/h,可列方程為()A. B. C. D.【答案】A【解答】解:設(shè)1號車的平均速度為xkm/h,則2號車的平均速度是1.2xkm/h,根據(jù)題意可得:,故選:A.11.關(guān)于x的不等式組恰好有3個整數(shù)解,則a滿足()A.a(chǎn)=10 B.10≤a<12 C.10<a≤12 D.10≤a≤12【答案】B【解答】解:由6﹣3x<0得:x>2,由2x≤a得:,∵不等式組恰好有3個整數(shù)解,∴不等式組的整數(shù)解為3、4、5,∴,解得10≤a<12,故選:B.12.如圖在平面直角坐標(biāo)系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進行下去…若點A(,0),B(0,2),則點B2018的坐標(biāo)為()A.(6048,0) B.(6054,0) C.(6048,2) D.(6054,2)【答案】D【解答】解:∵A(,0),B(0,2),∴OA=,OB=2,∴Rt△AOB中,AB==,∴OA+AB1+B1C2=+2+=6,∴B2的橫坐標(biāo)為:6,且B2C2=2,即B2(6,2),∴B4的橫坐標(biāo)為:2×6=12,∴點B2018的橫坐標(biāo)為:2018÷2×6=6054,點B2018的縱坐標(biāo)為:2,即B2018的坐標(biāo)是(6054,2).故選:D.二.填空題(本題共4小題,每小題3分,共12分.)13.把a2b﹣b3因式分解的結(jié)果是b(a+b)(a﹣b).【答案】b(a+b)(a﹣b).【解答】解:a2b﹣b3=b(a2﹣b2)=b(a+b)(a﹣b).故答案為:b(a+b)(a﹣b).14.若正多邊形的一個內(nèi)角等于150°,則這個正多邊形的邊數(shù)是12.【答案】見試題解答內(nèi)容【解答】解:∵正多邊形的一個內(nèi)角等于150°,∴它的外角是:180°﹣150°=30°,∴它的邊數(shù)是:360°÷30°=12.故答案為:12.15.命題“等腰三角形的兩個底角相等”的逆命題是兩個角相等三角形是等腰三角形.【答案】見試題解答內(nèi)容【解答】解:因為原命題的題設(shè)是:“一個三角形是等腰三角形”,結(jié)論是“這個三角形兩底角相等”,所以命題“等腰三角形的兩個底角相等”的逆命題是“兩個角相等三角形是等腰三角形”.16.如圖,有一張平行四邊形紙片ABCD,AB=5,AD=7,將這張紙片折疊,使得點B落在邊AD上,點B的對應(yīng)點為點B′,折痕為EF,若點E在邊AB上,則DB′長的最小值等于2.【答案】2.【解答】解:由折疊可知,BE=B'E,BF=B'F,如圖,當(dāng)E與A重合時,B'D最短.∵AB=5,AD=7,∴AB'=5,∴B'D=AD﹣AB'=7﹣5=2,即DB′長的最小值為2.故答案為:2.三.解答題(本題共7小題,共52分.解答應(yīng)寫出文字說明、證明過程或演算步驟.)17.(8分)(1)解方程:;(2)化簡:.【答案】見試題解答內(nèi)容【解答】解:(1)原方程兩邊同乘(x﹣2),去分母得:5+x﹣2=1﹣x,移項,合并同類項得:2x=﹣2,系數(shù)化為1得:x=﹣1,檢驗:將x=﹣1代入(x﹣2)得﹣1﹣2=﹣3≠0,則原分式方程的解為:x=﹣1;(2)原式=[﹣(a+2)]?=?=?=?=2(a+2)=2a+4.18.(6分)在邊長為1個單位長度的小正方形組成的網(wǎng)格中,建立如圖所示的平面直角坐標(biāo)系△ABC是格點三角形(頂點在網(wǎng)格線的交點上).(1)作出△ABC關(guān)于原點O成中心對稱的△A1B1C1,并寫出△A1B1C1三個頂點坐標(biāo)A1(),B1(),C1();(2)把△A1B1C1向上平移4個單位長度得到△A2B2C2,畫出△A2B2C2;(3)△A2B2C2與△ABC成中心對稱,請直接寫出對稱中心的坐標(biāo)().【答案】見試題解答內(nèi)容【解答】解:(1)如圖1,△A1B1C1為所求作的三角形;根據(jù)圖可知,A1(3,0),B1(5,﹣3),C1(1,﹣1).故答案為:3,0;5,﹣3;1,﹣1;(2)如圖2,△A2B2C2為所求作的三角形;(3)連接BB2、CC2,則BB2、CC2的交點即為對稱中心,如圖3,∵B(﹣5,3),B2(5,1),∴對稱中心的坐標(biāo)為,即對稱中心的坐標(biāo)為(0,2).故答案為:(0,2).19.(7分)如圖,在△ABC中,點D,E分別為AB,AC的中點,延長DE至點F,使得CF∥AB,連接DC,AF.(1)求證:△ADE≌△CFE;(2)求證:四邊形BDFC是平行四邊形.【答案】(1)見解析;(2)見解析;【解答】(1)證明:∵點E是AC的中點,∴AE=EC,∵CF∥AB,∴∠DAE=∠FCE,在△ADE和△CEF中,,∴△ADE≌△CFE(ASA).(2)解:∵點D,E分別是AB,AC的中點,∴DE是△ABC的中位線,∴DE∥BC,∵CF∥AB,DE∥BC,∴四邊形BDFC是平行四邊形.20.(7分)我們把連接三角形兩邊中點的線段叫做三角形的中位線.三角形的中位線有如下性質(zhì):三角形的中位線平行于三角形的第三邊并且等于第三邊的一半.下面請對這個性質(zhì)進行證明.(1)如圖1,點D,E分別是△ABC的邊AB,AC的中點,求證:DE∥BC,且;(2)如圖2,四邊形ABCD中,點M是邊AB的中點,點N是邊CD的中點,若AD∥BC,AD=4,MN=5,直接寫出BC的長.【答案】(1)見解析;(2)6.【解答】(1)證明:如圖所示,延長DE到F,使得DE=FE,連接CF.∵點E是AC的中點,∴AE=CE,在△AED和△CEF中,,∴△AED≌△CEF(SAS),∴∠A=∠FCE,AD=CF,∴AD∥CF,∵點D是AB的中點,∴AD=BD=CF,∴四邊形BCFD是平行四邊形,∴DE∥BC,DF=BC,又∵DE=FE,∴,∴DE∥BC,且;(2)解:如圖所示,連接AN并延長交BC延長線于E,∵AD∥BC,∴∠NAD=∠NEC,∠NDA=∠NCE,∵點N是CD的中點,∴DN=CN,在△ADN和△ECN中,,∴△ADN≌△ECN(AAS),∴AD=CE=4,AN=NE,即點N是AE的中點,又∵點M是AB的中點,∴由(1)的結(jié)論可知BE=2MN=10,∴BC=BE﹣CE=10﹣4=6.21.(7分)某商店購進甲、乙兩種手寫筆進行銷售,若售出2支甲種手寫筆和1支乙種手寫筆共收入354元,若售出3支甲種手寫筆和2支乙種手寫筆共收入600元.(1)求甲、乙兩種手寫筆每支的售價是多少元?(2)每支甲種手寫筆的成本83元,每支乙種手寫筆的成本103元.商店購進甲、乙兩種手寫筆共20支,其中乙種手寫筆的數(shù)量不超過甲種手寫筆數(shù)量的3倍,那么當(dāng)購進甲、乙兩種手寫筆分別是多少支時,該商店銷售完后獲得利潤最大?最大獲利多少元?【答案】(1)甲種手寫筆每支的售價為108元,乙種手寫筆每支的售價為138元;(2)購進甲種手寫筆5支,則購進乙種手寫筆15支時,該商店銷售完后獲得利潤最大,最大獲利是650元.【解答】解:(1)設(shè)甲種手寫筆每支的售價為a元,乙種手寫筆每支的售價為b元,由題意可得:,解得,答:甲種手寫筆每支的售價為108元,乙種手寫筆每支的售價為138元;(2)設(shè)購進甲種手寫筆x支,則購進乙種手寫筆(20﹣x)支,利潤為w元,由題意可得:w=(108﹣83)x+(138﹣103)(20﹣x)=﹣10x+700,∴w隨x的增大而減小,∵乙種手寫筆的數(shù)量不超過甲種手寫筆數(shù)量的3倍,∴20﹣x≤3x,解得x≥5,∴當(dāng)x=5時,w取得最大值,此時w=650,20﹣x=15,答:購進甲種手寫筆5支,則購進乙種手寫筆15支時,該商店銷售完后獲得利潤最大,最大獲利是650元22.(8分)如圖,在等邊三角形ABC中,點P為△ABC內(nèi)一點,連接AP,BP,CP,將線段AP繞點A順時針旋轉(zhuǎn)60°得到AP',連接PP',BP'.(1)用等式表示BP'與CP的數(shù)量關(guān)系,并證明;(2)當(dāng)∠BPC=120°時,①直接寫出∠P'BP的度數(shù)為;②若M為BC的中點,連接PM,用等式表示PM與AP的數(shù)量關(guān)系,并證明.【答案】(1)BP'=CP;(2)①60°;②AP=2PM.【解答】解:(1)BP'=CP,證明:∵△ABC是等邊三角形,∴AB=AC,∠BAC=60°,∴∠2+∠3=60°∵將線段AP繞點A順時針旋轉(zhuǎn)60°得到AP',∴AP=AP',∠PAP'=60°,∴∠1+∠2=60°,∴∠1=∠3,∴△ABP'≌△ACP(SAS),∴BP'=CP;(2)①當(dāng)∠BPC=120°時,則∠8+∠6=180°﹣∠BPC=60°,∵△ABP'≌△ACP,∴∠4=∠5,∴∠P'BP=∠4+∠7=∠5+60°﹣∠8=60°﹣∠6+60°﹣∠8=120°﹣(∠6+∠8)=120°﹣60°=60°,故答案為:60°;②AP=2PM,理由如下:延長PM到N,使PM=MN,連接BN,CN,∵M為BC的中點,∴BM=CM,∴四邊形PBNC為平行四邊形,∴BN∥CP且BN=CP,∴BN=BP',∠9=∠6,又∵∠8+∠6=60°,∴∠8+∠9=60°,∴∠PBN=60°=∠P'BP,又∵BP=BP,P'B=BN,∴△P'BP≌△NBP(SAS),∴PP'=PN=2PM,又∵△APP'為正三角形,∴PP'=AP,∴AP=2PM.23.(9分)如圖,在平面直角坐標(biāo)系中,直線y=﹣x+3與x軸、y軸分別交于點A、B,直線BC與x軸負(fù)半軸交于點C,且CO=2AO.(1)求點B與點C的坐標(biāo);(2)動點P從點C出發(fā)沿射線CA以每秒1個單位的速度運動,連接BP,設(shè)點P的運動時間為t(秒),△BPO的面積為S,求S與t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論