![2023屆河南省商丘市重點(diǎn)中學(xué)數(shù)學(xué)高三上期末調(diào)研試題含解析_第1頁](http://file4.renrendoc.com/view2/M02/2C/20/wKhkFmZ4zjmAXsWHAAHecSoZNVs439.jpg)
![2023屆河南省商丘市重點(diǎn)中學(xué)數(shù)學(xué)高三上期末調(diào)研試題含解析_第2頁](http://file4.renrendoc.com/view2/M02/2C/20/wKhkFmZ4zjmAXsWHAAHecSoZNVs4392.jpg)
![2023屆河南省商丘市重點(diǎn)中學(xué)數(shù)學(xué)高三上期末調(diào)研試題含解析_第3頁](http://file4.renrendoc.com/view2/M02/2C/20/wKhkFmZ4zjmAXsWHAAHecSoZNVs4393.jpg)
![2023屆河南省商丘市重點(diǎn)中學(xué)數(shù)學(xué)高三上期末調(diào)研試題含解析_第4頁](http://file4.renrendoc.com/view2/M02/2C/20/wKhkFmZ4zjmAXsWHAAHecSoZNVs4394.jpg)
![2023屆河南省商丘市重點(diǎn)中學(xué)數(shù)學(xué)高三上期末調(diào)研試題含解析_第5頁](http://file4.renrendoc.com/view2/M02/2C/20/wKhkFmZ4zjmAXsWHAAHecSoZNVs4395.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)在區(qū)間有三個零點(diǎn),,,且,若,則的最小正周期為()A. B. C. D.2.已知等邊△ABC內(nèi)接于圓:x2+y2=1,且P是圓τ上一點(diǎn),則的最大值是()A. B.1 C. D.23.某幾何體的三視圖如右圖所示,則該幾何體的外接球表面積為()A. B.C. D.4.設(shè)函數(shù)(,)是上的奇函數(shù),若的圖象關(guān)于直線對稱,且在區(qū)間上是單調(diào)函數(shù),則()A. B. C. D.5.在復(fù)平面內(nèi),復(fù)數(shù)(,)對應(yīng)向量(O為坐標(biāo)原點(diǎn)),設(shè),以射線Ox為始邊,OZ為終邊旋轉(zhuǎn)的角為,則,法國數(shù)學(xué)家棣莫弗發(fā)現(xiàn)了棣莫弗定理:,,則,由棣莫弗定理可以導(dǎo)出復(fù)數(shù)乘方公式:,已知,則()A. B.4 C. D.166.復(fù)數(shù)滿足,則()A. B. C. D.7.若為虛數(shù)單位,則復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知,且,則在方向上的投影為()A. B. C. D.9.是邊長為的等邊三角形,、分別為、的中點(diǎn),沿把折起,使點(diǎn)翻折到點(diǎn)的位置,連接、,當(dāng)四棱錐的外接球的表面積最小時,四棱錐的體積為()A. B. C. D.10.設(shè)為的兩個零點(diǎn),且的最小值為1,則()A. B. C. D.11.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.12.我國古代典籍《周易》用“卦”描述萬物的變化.每一“重卦”由從下到上排列的6個爻組成,爻分為陽爻“——”和陰爻“——”.如圖就是一重卦.在所有重卦中隨機(jī)取一重卦,則該重卦至少有2個陽爻的概率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系xOy中,已知A0,a,B3,a+414.某市高三理科學(xué)生有名,在一次調(diào)研測試中,數(shù)學(xué)成績服從正態(tài)分布,已知,若按成績分層抽樣的方式取份試卷進(jìn)行分析,則應(yīng)從分以上的試卷中抽取的份數(shù)為__________.15.過直線上一點(diǎn)作圓的兩條切線,切點(diǎn)分別為,,則的最小值是______.16.已知平行于軸的直線與雙曲線:的兩條漸近線分別交于,兩點(diǎn),為坐標(biāo)原點(diǎn),若為等邊三角形,則雙曲線的離心率為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)橢圓的離心率為,左、右焦點(diǎn)分別為,點(diǎn)D在橢圓C上,的周長為.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過圓上任意一點(diǎn)P作圓E的切線l,若l與橢圓C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),求證:為定值.18.(12分)數(shù)列滿足,是與的等差中項(xiàng).(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.19.(12分)已知橢圓C的中心在坐標(biāo)原點(diǎn),其短半軸長為1,一個焦點(diǎn)坐標(biāo)為,點(diǎn)在橢圓上,點(diǎn)在直線上,且.(1)證明:直線與圓相切;(2)設(shè)與橢圓的另一個交點(diǎn)為,當(dāng)?shù)拿娣e最小時,求的長.20.(12分)為了拓展城市的旅游業(yè),實(shí)現(xiàn)不同市區(qū)間的物資交流,政府決定在市與市之間建一條直達(dá)公路,中間設(shè)有至少8個的偶數(shù)個十字路口,記為,現(xiàn)規(guī)劃在每個路口處種植一顆楊樹或者木棉樹,且種植每種樹木的概率均為.(1)現(xiàn)征求兩市居民的種植意見,看看哪一種植物更受歡迎,得到的數(shù)據(jù)如下所示:A市居民B市居民喜歡楊樹300200喜歡木棉樹250250是否有的把握認(rèn)為喜歡樹木的種類與居民所在的城市具有相關(guān)性;(2)若從所有的路口中隨機(jī)抽取4個路口,恰有個路口種植楊樹,求的分布列以及數(shù)學(xué)期望;(3)在所有的路口種植完成后,選取3個種植同一種樹的路口,記總的選取方法數(shù)為,求證:.附:0.1000.0500.0100.0012.7063.8416.63510.82821.(12分)在平面直角坐標(biāo)系中,已知拋物線C:()的焦點(diǎn)F在直線上,平行于x軸的兩條直線,分別交拋物線C于A,B兩點(diǎn),交該拋物線的準(zhǔn)線于D,E兩點(diǎn).(1)求拋物線C的方程;(2)若F在線段上,P是的中點(diǎn),證明:.22.(10分)已知函數(shù)的圖象在處的切線方程是.(1)求的值;(2)若函數(shù),討論的單調(diào)性與極值;(3)證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)題意,知當(dāng)時,,由對稱軸的性質(zhì)可知和,即可求出,即可求出的最小正周期.【詳解】解:由于在區(qū)間有三個零點(diǎn),,,當(dāng)時,,∴由對稱軸可知,滿足,即.同理,滿足,即,∴,,所以最小正周期為:.故選:C.【點(diǎn)睛】本題考查正弦型函數(shù)的最小正周期,涉及函數(shù)的對稱性的應(yīng)用,考查計算能力.2、D【解析】
如圖所示建立直角坐標(biāo)系,設(shè),則,計算得到答案.【詳解】如圖所示建立直角坐標(biāo)系,則,,,設(shè),則.當(dāng),即時等號成立.故選:.【點(diǎn)睛】本題考查了向量的計算,建立直角坐標(biāo)系利用坐標(biāo)計算是解題的關(guān)鍵.3、A【解析】
由三視圖知:幾何體為三棱錐,且三棱錐的一條側(cè)棱垂直于底面,結(jié)合直觀圖判斷外接球球心的位置,求出半徑,代入求得表面積公式計算.【詳解】由三視圖知:幾何體為三棱錐,且三棱錐的一條側(cè)棱垂直于底面,高為2,底面為等腰直角三角形,斜邊長為,如圖:的外接圓的圓心為斜邊的中點(diǎn),,且平面,,的中點(diǎn)為外接球的球心,半徑,外接球表面積.故選:A【點(diǎn)睛】本題考查了由三視圖求幾何體的外接球的表面積,根據(jù)三視圖判斷幾何體的結(jié)構(gòu)特征,利用幾何體的結(jié)構(gòu)特征與數(shù)據(jù)求得外接球的半徑是解答本題的關(guān)鍵.4、D【解析】
根據(jù)函數(shù)為上的奇函數(shù)可得,由函數(shù)的對稱軸及單調(diào)性即可確定的值,進(jìn)而確定函數(shù)的解析式,即可求得的值.【詳解】函數(shù)(,)是上的奇函數(shù),則,所以.又的圖象關(guān)于直線對稱可得,,即,,由函數(shù)的單調(diào)區(qū)間知,,即,綜上,則,.故選:D【點(diǎn)睛】本題考查了三角函數(shù)的圖象與性質(zhì)的綜合應(yīng)用,由對稱軸、奇偶性及單調(diào)性確定參數(shù),屬于中檔題.5、D【解析】
根據(jù)復(fù)數(shù)乘方公式:,直接求解即可.【詳解】,.故選:D【點(diǎn)睛】本題考查了復(fù)數(shù)的新定義題目、同時考查了復(fù)數(shù)模的求法,解題的關(guān)鍵是理解棣莫弗定理,將復(fù)數(shù)化為棣莫弗定理形式,屬于基礎(chǔ)題.6、C【解析】
利用復(fù)數(shù)模與除法運(yùn)算即可得到結(jié)果.【詳解】解:,故選:C【點(diǎn)睛】本題考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)的模,考查計算能力,屬于基礎(chǔ)題.7、B【解析】
由共軛復(fù)數(shù)的定義得到,通過三角函數(shù)值的正負(fù),以及復(fù)數(shù)的幾何意義即得解【詳解】由題意得,因?yàn)?,,所以在?fù)平面內(nèi)對應(yīng)的點(diǎn)位于第二象限.故選:B【點(diǎn)睛】本題考查了共軛復(fù)數(shù)的概念及復(fù)數(shù)的幾何意義,考查了學(xué)生概念理解,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.8、C【解析】
由向量垂直的向量表示求出,再由投影的定義計算.【詳解】由可得,因?yàn)?,所以.故在方向上的投影為.故選:C.【點(diǎn)睛】本題考查向量的數(shù)量積與投影.掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵.9、D【解析】
首先由題意得,當(dāng)梯形的外接圓圓心為四棱錐的外接球球心時,外接球的半徑最小,通過圖形發(fā)現(xiàn),的中點(diǎn)即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進(jìn)而可根據(jù)四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設(shè)為梯形的外接圓圓心,當(dāng)也為四棱錐的外接球球心時,外接球的半徑最小,也就使得外接球的表面積最小,過作的垂線交于點(diǎn),交于點(diǎn),連接,點(diǎn)必在上,、分別為、的中點(diǎn),則必有,,即為直角三角形.對于等腰梯形,如圖:因?yàn)槭堑冗吶切?,、、分別為、、的中點(diǎn),必有,所以點(diǎn)為等腰梯形的外接圓圓心,即點(diǎn)與點(diǎn)重合,如圖,,所以四棱錐底面的高為,.故選:D.【點(diǎn)睛】本題考查四棱錐的外接球及體積問題,關(guān)鍵是要找到外接球球心的位置,這個是一個難點(diǎn),考查了學(xué)生空間想象能力和分析能力,是一道難度較大的題目.10、A【解析】
先化簡已知得,再根據(jù)題意得出f(x)的最小值正周期T為1×2,再求出ω的值.【詳解】由題得,設(shè)x1,x2為f(x)=2sin(ωx﹣)(ω>0)的兩個零點(diǎn),且的最小值為1,∴=1,解得T=2;∴=2,解得ω=π.故選A.【點(diǎn)睛】本題考查了三角恒等變換和三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題.11、B【解析】
列出每一次循環(huán),直到計數(shù)變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點(diǎn)睛】本題考查由程序框圖求輸出的結(jié)果,要注意在哪一步退出循環(huán),是一道容易題.12、C【解析】
利用組合的方法求所求的事件的對立事件,即該重卦沒有陽爻或只有1個陽爻的概率,再根據(jù)兩對立事件的概率和為1求解即可.【詳解】設(shè)“該重卦至少有2個陽爻”為事件.所有“重卦”共有種;“該重卦至少有2個陽爻”的對立事件是“該重卦沒有陽爻或只有1個陽爻”,其中,沒有陽爻(即6個全部是陰爻)的情況有1種,只有1個陽爻的情況有種,故,所以該重卦至少有2個陽爻的概率是.故選:C【點(diǎn)睛】本題主要考查了對立事件概率和為1的方法求解事件概率的方法.屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、(-53,【解析】
求出AB的長度,直線方程,結(jié)合△ABC的面積為5,轉(zhuǎn)化為圓心到直線的距離進(jìn)行求解即可.【詳解】解:AB的斜率k=a+4-a3-0=4=3設(shè)△ABC的高為h,則∵△ABC的面積為5,∴S=12|AB|h=即h=2,直線AB的方程為y﹣a=43x,即4x﹣3y+3若圓x2+y2=9上有且僅有四個不同的點(diǎn)C,則圓心O到直線4x﹣3y+3a=0的距離d=|3a|則應(yīng)該滿足d<R﹣h=3﹣2=1,即|3a|5得|3a|<5得-53<故答案為:(-53,【點(diǎn)睛】本題主要考查直線與圓的位置關(guān)系的應(yīng)用,求出直線方程和AB的長度,轉(zhuǎn)化為圓心到直線的距離是解決本題的關(guān)鍵.14、【解析】
由題意結(jié)合正態(tài)分布曲線可得分以上的概率,乘以可得.【詳解】解:,所以應(yīng)從分以上的試卷中抽取份.故答案為:.【點(diǎn)睛】本題考查正態(tài)分布曲線,屬于基礎(chǔ)題.15、【解析】
由切線的性質(zhì),可知,切由直角三角形PAO,PBO,即可設(shè),進(jìn)而表示,由圖像觀察可知進(jìn)而求出x的范圍,再用的式子表示,整理后利用換元法與雙勾函數(shù)求出最小值.【詳解】由題可知,,設(shè),由切線的性質(zhì)可知,則顯然,則或(舍去)因?yàn)榱?,則,由雙勾函數(shù)單調(diào)性可知其在區(qū)間上單調(diào)遞增,所以故答案為:【點(diǎn)睛】本題考查在以直線與圓的位置關(guān)系為背景下求向量數(shù)量積的最值問題,應(yīng)用函數(shù)形式表示所求式子,進(jìn)而利用分析函數(shù)單調(diào)性或基本不等式求得最值,屬于較難題.16、2【解析】
根據(jù)為等邊三角形建立的關(guān)系式,從而可求離心率.【詳解】據(jù)題設(shè)分析知,,所以,得,所以雙曲線的離心率.【點(diǎn)睛】本題主要考查雙曲線的離心率的求解,根據(jù)條件建立之間的關(guān)系式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】
(1)由,周長,解得,即可求得標(biāo)準(zhǔn)方程.(2)通過特殊情況的斜率不存在時,求得,再證明的斜率存在時,即可證得為定值.通過設(shè)直線的方程為與橢圓方程聯(lián)立,借助韋達(dá)定理求得,利用直線與圓相切,即,求得的關(guān)系代入,化簡即可證得即可證得結(jié)論.【詳解】(1)由題意得,周長,且.聯(lián)立解得,,所以橢圓C的標(biāo)準(zhǔn)方程為.(2)①當(dāng)直線l的斜率不存在時,不妨設(shè)其方程為,則,所以,即.②當(dāng)直線l的斜率存在時,設(shè)其方程為,并設(shè),由,,,由直線l與圓E相切,得.所以.從而,即.綜合上述,得為定值.【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系中定值問題,考查了學(xué)生計算求解能力,難度較難.18、(1)見解析,(2)【解析】
(1)根據(jù)等差中項(xiàng)的定義得,然后構(gòu)造新等比數(shù)列,寫出的通項(xiàng)即可求(2)根據(jù)(1)的結(jié)果,分組求和即可【詳解】解:(1)由已知可得,即,可化為,故數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列.即有,所以.(2)由(1)知,數(shù)列的通項(xiàng)為:,故.【點(diǎn)睛】考查等差中項(xiàng)的定義和分組求和的方法;中檔題.19、(1)見解析;(2).【解析】
(1)分斜率為0,斜率不存在,斜率不為0三種情況討論,設(shè)的方程為,可求解得到,,可得到的距離為1,即得證;(2)表示的面積為,利用均值不等式,即得解.【詳解】(1)由題意,橢圓的焦點(diǎn)在x軸上,且,所以.所以橢圓的方程為.由點(diǎn)在直線上,且知的斜率必定存在,當(dāng)?shù)男甭蕿?時,,,于是,到的距離為1,直線與圓相切.當(dāng)?shù)男甭什粸?時,設(shè)的方程為,與聯(lián)立得,所以,,從而.而,故的方程為,而在上,故,從而,于是.此時,到的距離為1,直線與圓相切.綜上,直線與圓相切.(2)由(1)知,的面積為,上式中,當(dāng)且僅當(dāng)?shù)忍柍闪?,所以面積的最小值為1.此時,點(diǎn)在橢圓的長軸端點(diǎn),為.不妨設(shè)為長軸左端點(diǎn),則直線的方程為,代入橢圓的方程解得,即,,所以.【點(diǎn)睛】本題考查了直線和橢圓綜合,考查了直線和圓的位置關(guān)系判斷,面積的最值問題,考查了學(xué)生綜合分析,數(shù)學(xué)運(yùn)算能力,屬于較難題.20、(1)沒有(2)分布列見解析,(3)證明見解析【解析】
(1)根據(jù)公式計算卡方值,再對應(yīng)卡值表判斷..(2)根據(jù)題意,隨機(jī)變量的可能取值為0,1,2,3,4,分別求得概率,寫出分布列,根據(jù)期望公式求值.(3)因?yàn)橹辽?個的偶數(shù)個十字路口,所以,即.要證,即證,根據(jù)組合數(shù)公式,即證;易知有.成立.設(shè)個路口中有個路口種植楊樹,下面分類討論①當(dāng)時,由論證.②當(dāng)時,由論證.③當(dāng)時,,設(shè),再論證當(dāng)時,取得最小值即可.【詳解】(1)本次實(shí)驗(yàn)中,,故沒有99.9%的把握認(rèn)為喜歡樹木的種類與居民所在的城市具有相關(guān)性.(2)依題意,的可能取值為0,1,2,3,4,故,,01234故.(3)∵,∴.要證,即證;首先證明:對任意,有.證明:因?yàn)椋?設(shè)個路口中有個路口種植楊樹,①當(dāng)時,,因?yàn)?,所以,于?②當(dāng)時,,同上可得③當(dāng)時,,設(shè),當(dāng)時,,顯然,當(dāng)即時,,當(dāng)即時,,即;,因此,即.綜上,,即.【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn)、離散型隨機(jī)變量的分布列以及期望、排列組合,還考查運(yùn)算求解能力以及必然與或然思想,屬于難題.21、(1);(2)見解析【解析】
(1)根據(jù)拋物線的焦點(diǎn)在直線上,可求得的值,從而求得拋物線的方程;(2)法一:設(shè)直線,的方程分別為和且,,,可得,,,的坐標(biāo),進(jìn)而可得直線的方程,根據(jù)在直線上,可得,再分別求得,,即可得證;法二:設(shè),,則,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 城鄉(xiāng)污水處理和管網(wǎng)建設(shè)工程項(xiàng)目可行性研究報告寫作模板-申批備案
- 2025年江西陶瓷工藝美術(shù)職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測試近5年??及鎱⒖碱}庫含答案解析
- 2025年昆明鐵道職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測試近5年??及鎱⒖碱}庫含答案解析
- 2025年揭陽職業(yè)技術(shù)學(xué)院高職單招語文2018-2024歷年參考題庫頻考點(diǎn)含答案解析
- 2025年氫能源行業(yè)發(fā)展動態(tài)與前景分析
- 展覽展示服務(wù)合同模板
- 幼兒園支教工作活動方案總結(jié)四篇
- 計件工資勞動合同范文
- 酒店轉(zhuǎn)讓簡單合同范本
- 場攤位的租賃合同年
- 2025年度高端商務(wù)車輛聘用司機(jī)勞動合同模板(專業(yè)版)4篇
- GB/T 45107-2024表土剝離及其再利用技術(shù)要求
- 2025長江航道工程局招聘101人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年黑龍江哈爾濱市面向社會招聘社區(qū)工作者1598人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 《妊娠期惡心嘔吐及妊娠劇吐管理指南(2024年)》解讀
- 《黑神話:悟空》跨文化傳播策略與路徑研究
- 《古希臘文明》課件
- 居家養(yǎng)老上門服務(wù)投標(biāo)文件
- 長沙市公安局交通警察支隊(duì)招聘普通雇員筆試真題2023
- 2025年高考語文作文滿分范文6篇
- 零售業(yè)連鎖加盟合同
評論
0/150
提交評論