2025屆浙江省富陽二中數(shù)學高一下期末考試試題含解析_第1頁
2025屆浙江省富陽二中數(shù)學高一下期末考試試題含解析_第2頁
2025屆浙江省富陽二中數(shù)學高一下期末考試試題含解析_第3頁
2025屆浙江省富陽二中數(shù)學高一下期末考試試題含解析_第4頁
2025屆浙江省富陽二中數(shù)學高一下期末考試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆浙江省富陽二中數(shù)學高一下期末考試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.不等式>0的解集是()A.(-,0)(1,+) B.(-,0)C.(1,+) D.(0,1)2.下列事件是隨機事件的是(1)連續(xù)兩次擲一枚硬幣,兩次都出現(xiàn)正面向上.(2)異性電荷相互吸引(3)在標準大氣壓下,水在℃時結冰(4)任意擲一枚骰子朝上的點數(shù)是偶數(shù)A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)3.已知點,,則與向量方向相同的單位向量為()A. B. C. D.4.某校統(tǒng)計了1000名學生的數(shù)學期末考試成績,已知這1000名學生的成績均在50分到150分之間,其頻率分布直方圖如圖所示,則這1000名學生中成績在130分以上的人數(shù)為()A.10 B.20 C.40 D.605.若,且,則()A. B. C. D.6.已知實數(shù)m,n滿足不等式組則關于x的方程x2-(3m+2n)x+6mn=0的兩根之和的最大值和最小值分別是()A.7,-4 B.8,-8C.4,-7 D.6,-67.將函數(shù)的圖象向左平移個單位長度,再將圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)的圖象,若對任意的均有成立,則的最小值為()A. B. C. D.8.已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項是,接下來的兩項是,再接下來的三項是,依此類推,記此數(shù)列為,則()A.1 B.2 C.4 D.89.為了治療某種疾病,研制了一種新藥,為確定該藥的療效,生物實驗室有只小動物,其中有3只注射過該新藥,若從這只小動物中隨機取出只檢測,則恰有只注射過該新藥的概率為()A. B. C. D.10.設直線l與平面平行,直線m在平面上,那么()A.直線l不平行于直線m B.直線l與直線m異面C.直線l與直線m沒有公共點 D.直線l與直線m不垂直二、填空題:本大題共6小題,每小題5分,共30分。11.在銳角△中,,,,則________12.如圖,已知六棱錐的底面是正六邊形,平面,,給出下列結論:①;②直線平面;③平面平面;④異面直線與所成角為;⑤直線與平面所成角的余弦值為.其中正確的有_______(把所有正確的序號都填上)13.已知,,,則的最小值為__________.14.已知圓錐的頂點為,母線,互相垂直,與圓錐底面所成角為,若的面積為,則該圓錐的體積為__________.15.九連環(huán)是我國從古至今廣泛流傳的一種益智游戲,它用九個圓環(huán)相連成串,以解開為勝.據明代楊慎《丹鉛總錄》記載:“兩環(huán)互相貫為一,得其關捩,解之為二,又合面為一”.在某種玩法中,用表示解下個圓環(huán)所需的移動最少次數(shù),滿足,且,則解下4個環(huán)所需的最少移動次數(shù)為_____.16.已知圓及點,若滿足:存在圓C上的兩點P和Q,使得,則實數(shù)m的取值范圍是________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知等差數(shù)列的前n項和為,且,.(1)求;(2)求.18.在平面直角坐標系xOy中,已知點,圓.(1)求過點P且與圓C相切于原點的圓的標準方程;(2)過點P的直線l與圓C依次相交于A,B兩點.①若,求l的方程;②當面積最大時,求直線l的方程.19.某工廠為了對新研發(fā)的一種產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到下表數(shù)據:單價(元)銷量(件)且,,(1)已知與具有線性相關關系,求出關于回歸直線方程;(2)解釋回歸直線方程中的含義并預測當單價為元時其銷量為多少?20.某高中非畢業(yè)班學生人數(shù)分布情況如下表,為了了解這2000個學生的體重情況,從中隨機抽取160個學生并測量其體重數(shù)據,根據測量數(shù)據制作了下圖所示的頻率分布直方圖.(1)為了使抽取的160個樣品更具代表性,宜采取分層抽樣,請你給出一個你認為合適的分層抽樣方案,并確定每層應抽取的樣品個數(shù);(2)根據頻率分布直方圖,求的值,并估計全體非畢業(yè)班學生中體重在內的人數(shù);(3)已知高一全體學生的平均體重為,高二全體學生的平均體重為,試估計全體非畢業(yè)班學生的平均體重.21.在銳角中,角,,所對的邊分別為,,,且.(1)求;(2)若的面積為8,,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

由題意可得,,求解即可.【詳解】,解得或,故解集為(-,0)(1,+),故選A.【點睛】本題考查了分式不等式的解法,考查了計算能力,屬于基礎題.2、D【解析】試題分析:根據隨機事件的定義:在相同條件下,可能發(fā)生也可能不發(fā)生的現(xiàn)象(2)是必然發(fā)生的,(3)是不可能發(fā)生的,所以不是隨機事件,故選擇D考點:隨機事件的定義3、A【解析】

由題得,設與向量方向相同的單位向量為,其中,利用列方程即可得解.【詳解】由題可得:,設與向量方向相同的單位向量為,其中,則,解得:或(舍去)所以與向量方向相同的單位向量為故選A【點睛】本題主要考查了單位向量的概念及方程思想,還考查了平面向量共線定理的應用,考查計算能力,屬于較易題.4、C【解析】

由頻率分布直方圖求出這1000名學生中成績在130分以上的頻率,由此能求出這1000名學生中成績在130分以上的人數(shù).【詳解】由頻率分布直方圖得這1000名學生中成績在130分以上的頻率為:,則這1000名學生中成績在130分以上的人數(shù)為人.故選:.【點睛】本題考查頻數(shù)的求法,考查頻率分布直方圖的性質等基礎知識,考查運算求解能力,是基礎題.5、A【解析】

利用二倍角的正弦公式和與余弦公式化簡可得.【詳解】∵,∴,∵,所以,∴,∴.故選:A【點睛】本題考查了二倍角的正弦公式,考查了二倍角的余弦公式,屬于基礎題.6、A【解析】由題意得,方程的兩根之和,畫出約束條件所表示的平面區(qū)域,如圖所示,由,可得,此時,由,可得,此時,故選A.7、D【解析】

直接應用正弦函數(shù)的平移變換和伸縮變換的規(guī)律性質,求出函數(shù)的解析式,對任意的均有,說明函數(shù)在時,取得最大值,得出的表達式,結合已知選出正確答案.【詳解】因為函數(shù)的圖象向左平移個單位長度,所以得到函數(shù),再將圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)的圖象,所以,對任意的均有成立,所以在時,取得最大值,所以有而,所以的最小值為.【點睛】本題考查了正弦型函數(shù)的圖象變換規(guī)律、函數(shù)圖象的性質,考查了函數(shù)最大值的概念,正確求出變換后的函數(shù)解析式是解題的關鍵.8、C【解析】

將數(shù)列分組:第1組為,第2組為,第3組為,,根據,進而得到數(shù)列的2017項為,數(shù)列的第2018項為,數(shù)列的第2019項為,即可求解.【詳解】將所給的數(shù)列分組:第1組為,第2組為,第3組為,,則數(shù)列的前n組共有項,又由,所以數(shù)列的前63組共有2016項,所以數(shù)列的2017項為,數(shù)列的第2018項為,數(shù)列的第2019項為,所以故選:C.【點睛】本題主要考查了等差數(shù)列的前n項和公式的應用,其中解答中根據所給數(shù)列合理分組,結合等差數(shù)列的前n項和求解是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.9、B【解析】

將只注射過新藥和未注射過新藥的小動物分別編號,列出所有的基本事件,并確定事件“恰有只注射過該新藥”所包含的基本事件的數(shù)目,然后利用古典概型的概率計算公式可該事件的概率.【詳解】將只注射過新藥的小動物編號為、、,只未注射新藥的小動物編號為、、,記事件恰有只注射過該新藥,所有的基本事件有:、、、、、、、、、、、、、、,共個,其中事件所包含的基本事件個數(shù)為個,由古典概型的概率公式得,故選B.【點睛】本題考查古典概型的概率公式,列舉基本事件是解題的關鍵,一般在列舉基本事件有枚舉法和數(shù)狀圖法,列舉時應注意不重不漏,考查計算能力,屬于中等題.10、C【解析】

由題設條件,得到直線與直線異面或平行,進而得到答案.【詳解】由題意,因為直線與平面平行,直線在平面上,所以直線與直線異面或平行,即直線與直線沒有公共點,故選C.【點睛】本題主要考查了空間中直線與直線只見那的位置關系的判定及應用,以及直線與平面平行的應用,著重考查了推理與論證能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由正弦定理,可得,求得,即可求解,得到答案.【詳解】由正弦定理,可得,所以,又由△為銳角三角形,所以.故答案為:.【點睛】本題主要考查了正弦定理得應用,其中解答中熟記正弦定理,準確計算是解答的關鍵,著重考查了計算能力,屬于基礎題.12、①③④⑤【解析】

設出幾何體的邊長,根據正六邊形的性質,線面垂直的判定定理,線面平行的判定定理,面面垂直的判定定理,異面直線所成角,線面角有關知識,對五個結論逐一分析,由此得出正確結論的序號.【詳解】設正六邊形長為,則.根據正六邊形的幾何性質可知,由平面得,所以平面,所以,故①正確.由于,而,所以直線平面不正確,故②錯誤.易證得,所以平面,所以平面平面,故③正確.由于,所以是異面直線與所成角,在中,,故,也即異面直線與所成角為,故④正確.連接,則,由①證明過程可知平面,所以平面,所以是所求線面角,在三角形中,,由余弦定理得,故⑤正確.綜上所述,正確的序號為①③④⑤.【點睛】本小題主要考查線面垂直的判定,面面垂直的判定,考查線線角、線面角的求法,屬于中檔題.13、8【解析】由題意可得:則的最小值為.當且僅當時等號成立.點睛:在應用基本不等式求最值時,要把握不等式成立的三個條件,就是“一正——各項均為正;二定——積或和為定值;三相等——等號能否取得”,若忽略了某個條件,就會出現(xiàn)錯誤.14、8π【解析】分析:作出示意圖,根據條件分別求出圓錐的母線,高,底面圓半徑的長,代入公式計算即可.詳解:如下圖所示,又,解得,所以,所以該圓錐的體積為.點睛:此題為填空題的壓軸題,實際上并不難,關鍵在于根據題意作出相應圖形,利用平面幾何知識求解相應線段長,代入圓錐體積公式即可.15、7【解析】

利用的通項公式,依次求出,從而得到,即可得到答案?!驹斀狻坑捎诒硎窘庀聜€圓環(huán)所需的移動最少次數(shù),滿足,且所以,,故,所以解下4個環(huán)所需的最少移動次數(shù)為7故答案為7.【點睛】本題考查數(shù)列的遞推公式,屬于基礎題。16、【解析】

設出點P、Q的坐標,利用平面向量的坐標運算以及兩圓相交的條件求出實數(shù)m的取值范圍.【詳解】設點,由得,由點在圓上,得,又在圓上,,與有交點,則,解得故實數(shù)m的取值范圍為.故答案為:【點睛】本題考查了向量的坐標運算、利用圓與圓的位置關系求參數(shù)的取值范圍,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)由可求得公差,利用等差數(shù)列通項公式求得結果;(2)利用等差數(shù)列前項和公式可求得結果.【詳解】(1)設等差數(shù)列公差為,則,解得:(2)由(1)知:【點睛】本題考查等差數(shù)列通項公式和前項和的求解問題,考查基礎公式的應用,屬于基礎題.18、(1);(2)①;②或.【解析】

(1)設所求圓的圓心為,而所求圓的圓心與、共線,故圓心在直線上,又圓同時經過點與點,求出圓的圓心和半徑,即可得答案;(2)①由題意可得為圓的直徑,求出的坐標,可得直線的方程;②當直線的斜率不存在時,直線方程為,求出,的坐標,得到的面積;當直線的斜率存在時,設直線方程為.利用基本不等式、點到直線的距離公式求得,則直線方程可求.【詳解】(1)由,得,圓的圓心坐標,設所求圓的圓心為.而所求圓的圓心與、共線,故圓心在直線上,又圓同時經過點與點,圓心又在直線上,則有:,解得:,即圓心的坐標為,又,即半徑,故所求圓的方程為;(2)①由,得為圓的直徑,則過點,的方程為,聯(lián)立,解得,直線的斜率,則直線的方程為,即;②當直線的斜率不存在時,直線方程為,此時,,,;當直線的斜率存在時,設直線方程為.再設直線被圓所截弦長為,則圓心到直線的距離,則.當且僅當,即時等號成立.此時弦長為10,圓心到直線的距離為5,由,解得.直線方程為.當面積最大時,所求直線的方程為:或.【點睛】本題考查圓的方程的求法、直線與圓的位置關系應用,考查函數(shù)與方程思想、轉化與化歸思想、分類討論思想、數(shù)形結合思想,考查邏輯推理能力和運算求解能力.19、(1);(2)銷量為件.【解析】

(1)利用最小二乘法的公式求得與的值,即可求出線性回歸方程;(2)的含義是單價每增加1元,該產品的銷量將減少7件;在(1)中求得的回歸方程中,取求得值,即可得到單價為12元時的銷量.【詳解】(1)由題意得:,,,,關于回歸直線方程為;(2)的含義是單價每增加元,該產品的銷量將減少件;當時,,即當單價為元時預測其銷量為件.【點睛】本題主要考查線性回歸方程的求法—最小二乘法,以及利用線性回歸方程進行預測估計。20、(1)見解析;(2);1350人;(3)平均體重為.【解析】

(1)考慮到體重應與年級及性別均有關,最合理的分層應分為以下四層:高一男生,高一女生,高二男生,高二女生,高一男44人,高一女52

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論