![2023屆北京師大二附中高三數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第1頁](http://file4.renrendoc.com/view4/M01/11/06/wKhkGGZ3aF-ADZPoAAJD12afyD8610.jpg)
![2023屆北京師大二附中高三數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第2頁](http://file4.renrendoc.com/view4/M01/11/06/wKhkGGZ3aF-ADZPoAAJD12afyD86102.jpg)
![2023屆北京師大二附中高三數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第3頁](http://file4.renrendoc.com/view4/M01/11/06/wKhkGGZ3aF-ADZPoAAJD12afyD86103.jpg)
![2023屆北京師大二附中高三數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第4頁](http://file4.renrendoc.com/view4/M01/11/06/wKhkGGZ3aF-ADZPoAAJD12afyD86104.jpg)
![2023屆北京師大二附中高三數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第5頁](http://file4.renrendoc.com/view4/M01/11/06/wKhkGGZ3aF-ADZPoAAJD12afyD86105.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.歐拉公式為,(虛數(shù)單位)是由瑞士著名數(shù)學(xué)家歐拉發(fā)現(xiàn)的,它將指數(shù)函數(shù)的定義域擴(kuò)大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,它在復(fù)變函數(shù)論里非常重要,被譽為“數(shù)學(xué)中的天橋”.根據(jù)歐拉公式可知,表示的復(fù)數(shù)位于復(fù)平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知復(fù)數(shù)滿足,則的值為()A. B. C. D.23.已知f(x)=是定義在R上的奇函數(shù),則不等式f(x-3)<f(9-x2)的解集為()A.(-2,6) B.(-6,2) C.(-4,3) D.(-3,4)4.棱長為2的正方體內(nèi)有一個內(nèi)切球,過正方體中兩條異面直線,的中點作直線,則該直線被球面截在球內(nèi)的線段的長為()A. B. C. D.15.已知直線過雙曲線C:的左焦點F,且與雙曲線C在第二象限交于點A,若(O為坐標(biāo)原點),則雙曲線C的離心率為A. B. C. D.6.已知雙曲線的焦距為,過左焦點作斜率為1的直線交雙曲線的右支于點,若線段的中點在圓上,則該雙曲線的離心率為()A. B. C. D.7.的展開式中的系數(shù)為()A.5 B.10 C.20 D.308.若函數(shù),在區(qū)間上任取三個實數(shù),,均存在以,,為邊長的三角形,則實數(shù)的取值范圍是()A. B. C. D.9.已知x,y滿足不等式,且目標(biāo)函數(shù)z=9x+6y最大值的變化范圍[20,22],則t的取值范圍()A.[2,4] B.[4,6] C.[5,8] D.[6,7]10.在中,,,,點滿足,則等于()A.10 B.9 C.8 D.711.設(shè)實數(shù)x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.412.祖暅原理:“冪勢既同,則積不容異”.意思是說:兩個同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)、為兩個同高的幾何體,、的體積不相等,、在等高處的截面積不恒相等.根據(jù)祖暅原理可知,是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.某校初三年級共有名女生,為了了解初三女生分鐘“仰臥起坐”項目訓(xùn)練情況,統(tǒng)計了所有女生分鐘“仰臥起坐”測試數(shù)據(jù)(單位:個),并繪制了如下頻率分布直方圖,則分鐘至少能做到個仰臥起坐的初三女生有_____________個.14.如圖,某市一學(xué)校位于該市火車站北偏東方向,且,已知是經(jīng)過火車站的兩條互相垂直的筆直公路,CE,DF及圓弧都是學(xué)校道路,其中,,以學(xué)校為圓心,半徑為的四分之一圓弧分別與相切于點.當(dāng)?shù)卣顿Y開發(fā)區(qū)域發(fā)展經(jīng)濟(jì),其中分別在公路上,且與圓弧相切,設(shè),的面積為.(1)求關(guān)于的函數(shù)解析式;(2)當(dāng)為何值時,面積為最小,政府投資最低?15.齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機(jī)選一匹進(jìn)行一場比賽,則田忌的馬獲勝的概率為__________.16.在中,內(nèi)角A,B,C的對邊分別是a,b,c,且,,,則_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知均為正實數(shù),函數(shù)的最小值為.證明:(1);(2).18.(12分)在平面直角坐標(biāo)系中,以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知曲線:.過點的直線:(為參數(shù))與曲線相交于,兩點.(1)求曲線的直角坐標(biāo)方程和直線的普通方程;(2)若,求實數(shù)的值.19.(12分)的內(nèi)角A,B,C的對邊分別為a,b,c,已知,.求C;若,求,的面積20.(12分)記無窮數(shù)列的前項中最大值為,最小值為,令,則稱是“極差數(shù)列”.(1)若,求的前項和;(2)證明:的“極差數(shù)列”仍是;(3)求證:若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.21.(12分)已知在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線與直線的直角坐標(biāo)方程;(2)若曲線與直線交于兩點,求的值.22.(10分)如圖所示,四棱柱中,底面為梯形,,,,,,.(1)求證:;(2)若平面平面,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
計算,得到答案.【詳解】根據(jù)題意,故,表示的復(fù)數(shù)在第一象限.故選:.【點睛】本題考查了復(fù)數(shù)的計算,意在考查學(xué)生的計算能力和理解能力.2、C【解析】
由復(fù)數(shù)的除法運算整理已知求得復(fù)數(shù)z,進(jìn)而求得其模.【詳解】因為,所以故選:C【點睛】本題考查復(fù)數(shù)的除法運算與求復(fù)數(shù)的模,屬于基礎(chǔ)題.3、C【解析】
由奇函數(shù)的性質(zhì)可得,進(jìn)而可知在R上為增函數(shù),轉(zhuǎn)化條件得,解一元二次不等式即可得解.【詳解】因為是定義在R上的奇函數(shù),所以,即,解得,即,易知在R上為增函數(shù).又,所以,解得.故選:C.【點睛】本題考查了函數(shù)單調(diào)性和奇偶性的應(yīng)用,考查了一元二次不等式的解法,屬于中檔題.4、C【解析】
連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,推導(dǎo)出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內(nèi)的線段的長.【詳解】如圖,MN為該直線被球面截在球內(nèi)的線段連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【點睛】本題主要考查該直線被球面截在球內(nèi)的線段的長的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題.5、B【解析】
直線的傾斜角為,易得.設(shè)雙曲線C的右焦點為E,可得中,,則,所以雙曲線C的離心率為.故選B.6、C【解析】
設(shè)線段的中點為,判斷出點的位置,結(jié)合雙曲線的定義,求得雙曲線的離心率.【詳解】設(shè)線段的中點為,由于直線的斜率是,而圓,所以.由于是線段的中點,所以,而,根據(jù)雙曲線的定義可知,即,即.故選:C【點睛】本小題主要考查雙曲線的定義和離心率的求法,考查直線和圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.7、C【解析】
由知,展開式中項有兩項,一項是中的項,另一項是與中含x的項乘積構(gòu)成.【詳解】由已知,,因為展開式的通項為,所以展開式中的系數(shù)為.故選:C.【點睛】本題考查求二項式定理展開式中的特定項,解決這類問題要注意通項公式應(yīng)寫準(zhǔn)確,本題是一道基礎(chǔ)題.8、D【解析】
利用導(dǎo)數(shù)求得在區(qū)間上的最大值和最小,根據(jù)三角形兩邊的和大于第三邊列不等式,由此求得的取值范圍.【詳解】的定義域為,,所以在上遞減,在上遞增,在處取得極小值也即是最小值,,,,,所以在區(qū)間上的最大值為.要使在區(qū)間上任取三個實數(shù),,均存在以,,為邊長的三角形,則需恒成立,且,也即,也即當(dāng)、時,成立,即,且,解得.所以的取值范圍是.故選:D【點睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查恒成立問題的求解,屬于中檔題.9、B【解析】
作出可行域,對t進(jìn)行分類討論分析目標(biāo)函數(shù)的最大值,即可求解.【詳解】畫出不等式組所表示的可行域如圖△AOB當(dāng)t≤2時,可行域即為如圖中的△OAM,此時目標(biāo)函數(shù)z=9x+6y在A(2,0)取得最大值Z=18不符合題意t>2時可知目標(biāo)函數(shù)Z=9x+6y在的交點()處取得最大值,此時Z=t+16由題意可得,20≤t+16≤22解可得4≤t≤6故選:B.【點睛】此題考查線性規(guī)劃,根據(jù)可行域結(jié)合目標(biāo)函數(shù)的最大值的取值范圍求參數(shù)的取值范圍,涉及分類討論思想,關(guān)鍵在于熟練掌握截距型目標(biāo)函數(shù)的最大值最優(yōu)解的處理辦法.10、D【解析】
利用已知條件,表示出向量,然后求解向量的數(shù)量積.【詳解】在中,,,,點滿足,可得則==【點睛】本題考查了向量的數(shù)量積運算,關(guān)鍵是利用基向量表示所求向量.11、C【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)目標(biāo)函數(shù)的幾何意義平移得到答案.【詳解】如圖所示:畫出可行域和目標(biāo)函數(shù),z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據(jù)圖像知,當(dāng)x+y=2時,且x∈-13,1時,故選:C.【點睛】本題考查了線性規(guī)劃問題,畫出圖像是解題的關(guān)鍵.12、A【解析】
由題意分別判斷命題的充分性與必要性,可得答案.【詳解】解:由題意,若、的體積不相等,則、在等高處的截面積不恒相等,充分性成立;反之,、在等高處的截面積不恒相等,但、的體積可能相等,例如是一個正放的正四面體,一個倒放的正四面體,必要性不成立,所以是的充分不必要條件,故選:A.【點睛】本題主要考查充分條件、必要條件的判定,意在考查學(xué)生的邏輯推理能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)數(shù)據(jù)先求出,再求出分鐘至少能做到個仰臥起坐的初三女生人數(shù)即可.【詳解】解:,.則分鐘至少能做到個仰臥起坐的初三女生人數(shù)為.故答案為:.【點睛】本題主要考查頻率分布直方圖,屬于基礎(chǔ)題.14、(1);(2).【解析】
(1)以點為坐標(biāo)原點建立如圖所示的平面直角坐標(biāo)系,則,在中,設(shè),又,故,,進(jìn)而表示直線的方程,由直線與圓相切構(gòu)建關(guān)系化簡整理得,即可表示OA,OB,最后由三角形面積公式表示面積即可;(2)令,則,由輔助角公式和三角函數(shù)值域可求得t的取值范圍,進(jìn)而對原面積的函數(shù)用含t的表達(dá)式換元,再令進(jìn)行換元,并構(gòu)建新的函數(shù),由二次函數(shù)性質(zhì)即可求得最小值.【詳解】解:(1)以點為坐標(biāo)原點建立如圖所示的平面直角坐標(biāo)系,則,在中,設(shè),又,故,.所以直線的方程為,即.因為直線與圓相切,所以.因為點在直線的上方,所以,所以式可化為,解得.所以,.所以面積為.(2)令,則,且,所以,.令,,所以在上單調(diào)遞減.所以,當(dāng),即時,取得最大值,取最小值.答:當(dāng)時,面積為最小,政府投資最低.【點睛】本題考查三角函數(shù)的實際應(yīng)用,應(yīng)優(yōu)先結(jié)合實際建立合適的數(shù)學(xué)模型,再按模型求最值,屬于難題.15、.【解析】分析:由題意結(jié)合古典概型計算公式即可求得題中的概率值.詳解:由題意可知了,比賽可能的方法有種,其中田忌可獲勝的比賽方法有三種:田忌的中等馬對齊王的下等馬,田忌的上等馬對齊王的下等馬,田忌的上等馬對齊王的中等馬,結(jié)合古典概型公式可得,田忌的馬獲勝的概率為.點睛:有關(guān)古典概型的概率問題,關(guān)鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時,用列舉法把所有基本事件一一列出時,要做到不重復(fù)、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計數(shù)原理的正確使用.16、9【解析】
已知由余弦定理即可求得,由可求得,即可求得,利用正弦定理即可求得結(jié)果.【詳解】由余弦定理和,可得,得,由,,,由正弦定理,得.故答案為:.【點睛】本題考查正余弦定理在解三角形中的應(yīng)用,難度一般.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】
(1)運用絕對值不等式的性質(zhì),注意等號成立的條件,即可求得最小值,再運用柯西不等式,即可得到最小值.(2)利用基本不等式即可得到結(jié)論,注意等號成立的條件.【詳解】(1)由題意,則函數(shù),又函數(shù)的最小值為,即,由柯西不等式得,當(dāng)且僅當(dāng)時取“=”.故.(2)由題意,利用基本不等式可得,,,(以上三式當(dāng)且僅當(dāng)時同時取“=”)由(1)知,,所以,將以上三式相加得即.【點睛】本題主要考查絕對值不等式、柯西不等式等基礎(chǔ)知識,考查運算能力,屬于中檔題.18、(1),;(2).【解析】
(1)將代入求解,由(為參數(shù))消去即可.(2)將(為參數(shù))與聯(lián)立得,設(shè),兩點對應(yīng)的參數(shù)為,,則,,再根據(jù),即,利用韋達(dá)定理求解.【詳解】(1)把代入,得,由(為參數(shù)),消去得,∴曲線的直角坐標(biāo)方程和直線的普通方程分別是,.(2)將(為參數(shù))代入得,設(shè),兩點對應(yīng)的參數(shù)為,,則,,由得,所以,即,所以,而,解得.【點睛】本題主要考查參數(shù)方程、極坐標(biāo)方程、直角坐標(biāo)方程的轉(zhuǎn)化和直線參數(shù)方程的應(yīng)用,還考查了運算求解的能力,屬于中檔題.19、(1).(2).【解析】
由已知利用正弦定理,同角三角函數(shù)基本關(guān)系式可求,結(jié)合范圍,可求,由已知利用二倍角的余弦函數(shù)公式可得,結(jié)合范圍,可求A,根據(jù)三角形的內(nèi)角和定理即可解得C的值.由及正弦定理可得b的值,根據(jù)兩角和的正弦函數(shù)公式可求sinC的值,進(jìn)而根據(jù)三角形的面積公式即可求解.【詳解】由已知可得,又由正弦定理,可得,即,,,,即,又,,或舍去,可得,.,,,由正弦定理,可得,,.【點睛】本題主要考查了正弦定理,同角三角函數(shù)基本關(guān)系式,二倍角的余弦函數(shù)公式,三角形的內(nèi)角和定理,兩角和的正弦函數(shù)公式,三角形的面積公式等知識在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.20、(1)(2)證明見解析(3)證明見解析【解析】
(1)由是遞增數(shù)列,得,由此能求出的前項和.(2)推導(dǎo)出,,由此能證明的“極差數(shù)列”仍是.(3)證當(dāng)數(shù)列是等差數(shù)列時,設(shè)其公差為,,是一個單調(diào)遞增數(shù)列,從而,,由,,,分類討論,能證明若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.【詳解】(1)解:∵無窮數(shù)列的前項中最大值為,最小值為,,,是遞增數(shù)列,∴,∴的前項和.(2)證明:∵,,∴,∴,∵,∴,∴的“極差數(shù)列”仍是(3)證明:當(dāng)數(shù)列是等差數(shù)列時,設(shè)其公差為,,根據(jù),的定義,得:,,且兩個不等式中至少有一個取等號,當(dāng)時,必有,∴,∴是一個單調(diào)遞增數(shù)列,∴,,∴,∴,∴是等差數(shù)列,當(dāng)時,則必有,∴,∴是一個單調(diào)遞減數(shù)列,∴,,∴,∴.∴是等差數(shù)列,當(dāng)時,,∵,中必有一個為0,根據(jù)上式,一個為0,為一個必為0,∴,,∴數(shù)列是常數(shù)數(shù)列,則數(shù)列是等差數(shù)列.綜上,若數(shù)列是等差數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)境工程技術(shù)實施指南
- 亞馬遜店鋪托管合同范本
- 1314奶茶加盟合同范本
- 代買車位合同范本
- 農(nóng)村種樹土地流轉(zhuǎn)合同范本
- 國際工程總承包項目外事管理的問題及應(yīng)對措施
- 2025年度新型環(huán)保水泥管購銷合同協(xié)議
- 代購合伙合同范例
- 出資協(xié)議簽署合同范本
- 農(nóng)村購買荒地合同范例
- 強(qiáng)化提升1解三角形中的三線問題(解析)
- 異地就醫(yī)備案的個人承諾書
- 2024-2030年中國ODM服務(wù)器行業(yè)市場發(fā)展分析及前景趨勢與投資研究報告
- 六年級下健康教案設(shè)計
- 室內(nèi)裝飾拆除專項施工方案
- 醫(yī)院院外會診申請單、醫(yī)師外出會診審核表、醫(yī)師外出會診回執(zhí)
- 鋼筋工程精細(xì)化管理指南(中建內(nèi)部)
- 2024年山西省高考考前適應(yīng)性測試 (一模)英語試卷(含答案詳解)
- 教科版六年級下冊科學(xué)第三單元《宇宙》教材分析及全部教案(定稿;共7課時)
- 2024年中國鐵路投資集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 干部人事檔案數(shù)字化 制度
評論
0/150
提交評論