河北省保定市重點初中2025屆高一下數(shù)學期末預(yù)測試題含解析_第1頁
河北省保定市重點初中2025屆高一下數(shù)學期末預(yù)測試題含解析_第2頁
河北省保定市重點初中2025屆高一下數(shù)學期末預(yù)測試題含解析_第3頁
河北省保定市重點初中2025屆高一下數(shù)學期末預(yù)測試題含解析_第4頁
河北省保定市重點初中2025屆高一下數(shù)學期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河北省保定市重點初中2025屆高一下數(shù)學期末預(yù)測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)x,y滿足約束條件2x-y+2≥0,8x-y-4≤0,x≥0,y≥0,若目標函數(shù)z=abx+y(a,A.2 B.4 C.6 D.82.若關(guān)于x的一元二次不等式ax2+2ax+1>0A.(-∞,0)∪(1,+∞) B.(0,1) C.(-∞,0]∪(1,+∞)3.已知是球O的球面上四點,面ABC,,則該球的半徑為()A. B. C. D.4.讀下面的程序框圖,若輸入的值為-5,則輸出的結(jié)果是()A.-1 B.0 C.1 D.25.已知,,,則a,b,c的大小關(guān)系為()A. B. C. D.6.已知數(shù)列的前項和為,且滿足,,則()A. B. C. D.7.在四邊形中,若,且,則四邊形是()A.矩形 B.菱形 C.正方形 D.梯形8.函數(shù)的零點所在的一個區(qū)間是().A. B. C. D.9.已知非零向量與的夾角為,且,則()A.1 B.2 C. D.10.在中,若,則的形狀是()A.鈍角三角形 B.直角三角形C.銳角三角形 D.不能確定二、填空題:本大題共6小題,每小題5分,共30分。11.把函數(shù)的圖像上各點向右平移個單位,再把橫坐標變?yōu)樵瓉淼囊话耄v坐標擴大到原來的4倍,則所得的函數(shù)的對稱中心坐標為________12.已知,且這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,則_______________.13.函數(shù)的值域是__________.14.在數(shù)列中,若,(),則________15.數(shù)列滿足,則等于______.16.已知數(shù)列為等差數(shù)列,,,若,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在數(shù)列中,,,數(shù)列的前項和為,且.(1)證明:數(shù)列是等差數(shù)列.(2)若對恒成立,求的取值范圍.18.如圖,菱形ABCD與正三角形BCE的邊長均為2,且平面ABCD⊥平面BCE,平面ABCD,.(I)求證:平面ABCD;(II)求證:平面ACF⊥平面BDF.19.設(shè)數(shù)列滿足,,,.s(1)證明:數(shù)列是等差數(shù)列,并求數(shù)列的通項;(2)求數(shù)列的通項,并求數(shù)列的前項和;(3)若,且是單調(diào)遞增數(shù)列,求實數(shù)的取值范圍.20.如圖,在四邊形ABCD中,,,已知,.(1)求的值;(2)若,且,求BC的長.21.在四棱錐中,,.(1)若點為的中點,求證:平面;(2)當平面平面時,求二面角的余弦值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

畫出不等式組對應(yīng)的平面區(qū)域,平移動直線至1,4時z有最大值8,再利用基本不等式可求a+b的最小值.【詳解】原不等式組表示的平面區(qū)域如圖中陰影部分所示,當直線z=abx+y(a,b>0)過直線2x-y+2=0與直線8x-y-4=0的交點1,4時,目標函數(shù)z=abx+y(a,即ab=4,所以a+b≥2ab=4,當且僅當a=b=2時,等號成立.所以【點睛】二元一次不等式組的條件下的二元函數(shù)的最值問題,常通過線性規(guī)劃來求最值,求最值時往往要考二元函數(shù)的幾何意義,比如3x+4y表示動直線3x+4y-z=0的橫截距的三倍,而y+2x-1則表示動點Px,y與2、B【解析】

由題意,得出a≠0,再分析不等式開口和判別式,可得結(jié)果.【詳解】由題,因為為一元二次不等式,所以a≠0又因為ax所以a>0Δ=故選B【點睛】本題考查了一元二次不等式解法,利用二次函數(shù)圖形解題是關(guān)鍵,屬于基礎(chǔ)題.3、D【解析】

根據(jù)面,,得到三棱錐的三條側(cè)棱兩兩垂直,以三條側(cè)棱為棱長得到一個長方體,且長方體的各頂點都在該球上,長方體的對角線的長就是該球的直徑,從而得到答案?!驹斀狻棵妫忮F的三條側(cè)棱,,兩兩垂直,可以以三條側(cè)棱,,為棱長得到一個長方體,且長方體的各頂點都在該球上,長方體的對角線的長就是該球的直徑,即則該球的半徑為故答案選D【點睛】本題考查三棱錐外接球的半徑的求法,本題解題的關(guān)鍵是以三條側(cè)棱為棱長得到一個長方體,三棱錐的外接球,即為該長方體的外接球,利用長方體外接球的直徑為長對角線的長,屬于基礎(chǔ)題。4、A【解析】

直接模擬程序框圖運行,即可得出結(jié)論.【詳解】模擬程序框圖的運行過程如下:輸入,進入判斷結(jié)構(gòu),則,,輸出,故選:A.【點睛】本題主要考查程序框圖,一般求輸出結(jié)果時,常模擬程序運行,列表求解.5、D【解析】

由,,,得解.【詳解】解:因為,,,所以,故選:D.【點睛】本題考查了指數(shù)冪,對數(shù)值的大小關(guān)系,屬基礎(chǔ)題.6、B【解析】

由可知,數(shù)列隔項成等比數(shù)列,從而得到結(jié)果.【詳解】由可知:當n≥2時,,兩式作商可得:∴奇數(shù)項構(gòu)成以1為首項,2為公比的等比數(shù)列,偶數(shù)項構(gòu)成以2為首項,2為公比的等比數(shù)列,∴故選:B【點睛】本題考查數(shù)列的遞推關(guān)系,考查隔項成等比,考查分析問題解決問題的能力,屬于中檔題.7、A【解析】

根據(jù)向量相等可知四邊形為平行四邊形;由數(shù)量積為零可知,從而得到四邊形為矩形.【詳解】,可知且四邊形為平行四邊形由可知:四邊形為矩形本題正確選項:【點睛】本題考查相等向量、垂直關(guān)系的向量表示,屬于基礎(chǔ)題.8、B【解析】

判斷函數(shù)的單調(diào)性,利用f(﹣1)與f(1)函數(shù)值的大小,通過零點存在性定理判斷即可【詳解】函數(shù)f(x)=2x+3x是增函數(shù),f(﹣1)=<1,f(1)=1+1=1>1,可得f(﹣1)f(1)<1.由零點存在性定理可知:函數(shù)f(x)=2x+3x的零點所在的一個區(qū)間(﹣1,1).故選:B.【點睛】本題考查零點存在性定理的應(yīng)用,考查計算能力,注意函數(shù)的單調(diào)性的判斷.9、B【解析】

根據(jù)條件可求出,從而對兩邊平方即可得出,解出即可.【詳解】向量與的夾角為,且;;;;或0(舍去);.故選:.【點睛】本題主要考查了向量數(shù)量積的定義及數(shù)量積的運算公式,屬于中檔題.10、A【解析】

由正弦定理得,再由余弦定理求得,得到,即可得到答案.【詳解】因為在中,滿足,由正弦定理知,代入上式得,又由余弦定理可得,因為C是三角形的內(nèi)角,所以,所以為鈍角三角形,故選A.【點睛】本題主要考查了利用正弦定理、余弦定理判定三角形的形狀,其中解答中合理利用正、余弦定理,求得角C的范圍是解答本題的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、,【解析】

根據(jù)三角函數(shù)的圖象變換,求得函數(shù)的解析式,進而求得函數(shù)的對稱中心,得到答案.【詳解】由題意,把函數(shù)的圖像上各點向右平移個單位,可得,再把圖象上點的橫坐標變?yōu)樵瓉淼囊话耄傻茫押瘮?shù)縱坐標擴大到原來的4倍,可得,令,解得,所以函數(shù)的對稱中心為.故答案為:.【點睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的對稱中心的求解,其中解答中熟練三角函數(shù)的圖象變換,以及三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.12、5【解析】

試題分析:由題意得,為等差數(shù)列時,一定為等差中項,即,為等比數(shù)列時,-2為等比中項,即,所以.考點:等差,等比數(shù)列的性質(zhì)13、【解析】

根據(jù)反余弦函數(shù)的性質(zhì),可得函數(shù)在單調(diào)遞減函數(shù),代入即可求解.【詳解】由題意,函數(shù)的性質(zhì),可得函數(shù)在單調(diào)遞減函數(shù),又由,所以函數(shù)在的值域為.故答案為:.【點睛】本題主要考查了反余弦函數(shù)的單調(diào)性的應(yīng)用,其中解答中熟記反余弦函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.14、【解析】

由題意,得到數(shù)列表示首項為1,公差為2的等差數(shù)列,結(jié)合等差數(shù)列的通項公式,即可求解.【詳解】由題意,數(shù)列中,滿足,(),即(),所以數(shù)列表示首項為1,公差為2的等差數(shù)列,所以.故答案為:【點睛】本題主要考查了等差數(shù)列的定義和通項公式的應(yīng)用,其中解答中熟記等差數(shù)列的定義,合理利用數(shù)列的通項公式求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.15、15【解析】

先由,可求出,然后由,代入已知遞推公式即可求解。【詳解】故答案為15.【點睛】本題考查是遞推公式的應(yīng)用,是一道基礎(chǔ)題。16、【解析】

設(shè)等差數(shù)列的公差為,根據(jù)已知條件列方程組解出和的值,可求出的表達式,再由可解出的值.【詳解】設(shè)等差數(shù)列的公差為,由,得,解得,,,因此,,故答案為:.【點睛】本題考查等差數(shù)列的求和,對于等差數(shù)列的問題,通常建立關(guān)于首項和公差的方程組求解,考查方程思想,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)根據(jù)已知可變形為常數(shù);(2)首先求數(shù)列的通項公式,然后利用裂項相消法求,若滿足對恒成立,需滿足,,求的取值范圍.【詳解】(1)證明:因為,所以,,則.又,故數(shù)列是以1為首項,2為公差的等差數(shù)列.(2)由(1)可知,則.因為,所以,所以.易知單調(diào)遞增,則.所以,且,解得.故的取值范圍為.【點睛】本題考查了證明等差數(shù)列的方法,以及裂項相消法求和,本題的一個亮點是與函數(shù)結(jié)合考查數(shù)列的最值問題,涉及最值時,需先判斷函數(shù)的單調(diào)性,可以根據(jù)函數(shù)特征直接判斷單調(diào)性或是根據(jù)的正負判斷單調(diào)性,然后求最值.18、(Ⅰ)見解析;(Ⅱ)見解析.【解析】(1)添加輔助線,通過證明線線平行來證明線面平行.(2)通過證明線面垂直面,來證明面面.(Ⅰ)證明:如圖,過點作于,連接,∴.∵平面⊥平面,平面,平面平面,∴⊥平面,又∵⊥平面,,∴,.∴四邊形為平行四邊形.∴.∵平面,平面,∴平面.(Ⅱ)證明:面,,又四邊形是菱形,,又,面,又面,從而面面.點晴:本題考查的是空間線面的平行和垂直關(guān)系.第一問要考查的是線面平行,通過先證明,得四邊形為平行四邊形.證得,可得平面,這里對于線面平行的條件平面,平面要寫全;第二問中通過先證明面,再結(jié)合面,從而面面.19、(1)證明見解析,;(2),;(3).【解析】

(1)利用等差數(shù)列的定義可證明出數(shù)列是等差數(shù)列,并確定該數(shù)列的首項和公差,即可得出數(shù)列的通項;(2)利用累加法求出數(shù)列的通項,然后利用裂項法求出數(shù)列的前項和;(3)求出,然后分為正奇數(shù)和正偶數(shù)兩種情況分類討論,結(jié)合可得出實數(shù)的取值范圍.【詳解】(1),等式兩邊同時減去得,,且,所以,數(shù)列是以為首項,以為公差的等差數(shù)列,因此,;(2),,,;(3).當為正奇數(shù)時,,,由,得,可得,由于數(shù)列為單調(diào)遞減數(shù)列,;當為正偶數(shù)時,,,由,得,可得,由于數(shù)列為單調(diào)遞增數(shù)列,.因此,實數(shù)的取值范圍是.【點睛】本題考查利用等差數(shù)列的定義證明等差數(shù)列,同時也考查了累加法求通項、裂項求和法以及利用數(shù)列的單調(diào)性求參數(shù),充分利用單調(diào)性的定義來求解,考查運算求解能力,屬于中等題.20、(1)(2)【解析】

(1)由正弦定理可得;(2)由(1)求得,然后利用余弦定理求解.【詳解】(1)在中,由正弦定理,得,因為,,,所以;(2)由(1)可知,,因為,所以,在中,由余弦定理,得,因為,,所以,即,解得或,又,則.【點睛】本題考查正弦定理和余弦定理解三角形,掌握正弦定理和余弦定理是解題關(guān)鍵.21、(1)見解析;(2).【解析】

(I)結(jié)合平面與平面平行判定,得到平面BEM平行平面PAD,結(jié)合平面與平面性質(zhì),證明結(jié)論.(II)建立空間坐標系,分別計算平面PCD和平面PDB的法向量,結(jié)合向量數(shù)量積公式,計算余弦值,即可.【詳解】(Ⅰ)取的中點為,連結(jié),.由已知得,為等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論