版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽省安慶市懷寧二中高三第二次聯(lián)考新高考數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某部隊(duì)在一次軍演中要先后執(zhí)行六項(xiàng)不同的任務(wù),要求是:任務(wù)A必須排在前三項(xiàng)執(zhí)行,且執(zhí)行任務(wù)A之后需立即執(zhí)行任務(wù)E,任務(wù)B、任務(wù)C不能相鄰,則不同的執(zhí)行方案共有()A.36種 B.44種 C.48種 D.54種2.在中,,則()A. B. C. D.3.若某幾何體的三視圖如圖所示,則該幾何體的表面積為()A.240 B.264 C.274 D.2824.若的展開(kāi)式中含有常數(shù)項(xiàng),且的最小值為,則()A. B. C. D.5.下列函數(shù)中,既是奇函數(shù),又是上的單調(diào)函數(shù)的是()A. B.C. D.6.?dāng)?shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,例如:四葉草曲線就是其中一種,其方程為.給出下列四個(gè)結(jié)論:①曲線有四條對(duì)稱(chēng)軸;②曲線上的點(diǎn)到原點(diǎn)的最大距離為;③曲線第一象限上任意一點(diǎn)作兩坐標(biāo)軸的垂線與兩坐標(biāo)軸圍成的矩形面積最大值為;④四葉草面積小于.其中,所有正確結(jié)論的序號(hào)是()A.①② B.①③ C.①③④ D.①②④7.已知整數(shù)滿足,記點(diǎn)的坐標(biāo)為,則點(diǎn)滿足的概率為()A. B. C. D.8.國(guó)家統(tǒng)計(jì)局服務(wù)業(yè)調(diào)查中心和中國(guó)物流與采購(gòu)聯(lián)合會(huì)發(fā)布的2018年10月份至2019年9月份共12個(gè)月的中國(guó)制造業(yè)采購(gòu)經(jīng)理指數(shù)(PMI)如下圖所示.則下列結(jié)論中錯(cuò)誤的是()A.12個(gè)月的PMI值不低于50%的頻率為B.12個(gè)月的PMI值的平均值低于50%C.12個(gè)月的PMI值的眾數(shù)為49.4%D.12個(gè)月的PMI值的中位數(shù)為50.3%9.已知雙曲線的左、右頂點(diǎn)分別為,點(diǎn)是雙曲線上與不重合的動(dòng)點(diǎn),若,則雙曲線的離心率為()A. B. C.4 D.210.定義運(yùn)算,則函數(shù)的圖象是().A. B.C. D.11.函數(shù),,的部分圖象如圖所示,則函數(shù)表達(dá)式為()A. B.C. D.12.一個(gè)陶瓷圓盤(pán)的半徑為,中間有一個(gè)邊長(zhǎng)為的正方形花紋,向盤(pán)中投入1000粒米后,發(fā)現(xiàn)落在正方形花紋上的米共有51粒,據(jù)此估計(jì)圓周率的值為(精確到0.001)()A.3.132 B.3.137 C.3.142 D.3.147二、填空題:本題共4小題,每小題5分,共20分。13.過(guò)圓的圓心且與直線垂直的直線方程為_(kāi)_________.14.已知集合,則_______.15.已知,,,的夾角為30°,,則_________.16.已知正四棱柱的底面邊長(zhǎng)為,側(cè)面的對(duì)角線長(zhǎng)是,則這個(gè)正四棱柱的體積是____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)為實(shí)數(shù),已知函數(shù),.(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間:(2)設(shè)為實(shí)數(shù),若不等式對(duì)任意的及任意的恒成立,求的取值范圍;(3)若函數(shù)(,)有兩個(gè)相異的零點(diǎn),求的取值范圍.18.(12分)在中,、、的對(duì)應(yīng)邊分別為、、,已知,,.(1)求;(2)設(shè)為中點(diǎn),求的長(zhǎng).19.(12分)已知數(shù)列{an}滿足條件,且an+2=(﹣1)n(an﹣1)+2an+1,n∈N*.(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)設(shè)bn=,Sn為數(shù)列{bn}的前n項(xiàng)和,求證:Sn.20.(12分)在多面體中,四邊形是正方形,平面,,,為的中點(diǎn).(1)求證:;(2)求平面與平面所成角的正弦值.21.(12分)如圖,在正四棱柱中,,,過(guò)頂點(diǎn),的平面與棱,分別交于,兩點(diǎn)(不在棱的端點(diǎn)處).(1)求證:四邊形是平行四邊形;(2)求證:與不垂直;(3)若平面與棱所在直線交于點(diǎn),當(dāng)四邊形為菱形時(shí),求長(zhǎng).22.(10分)如圖,⊙的直徑的延長(zhǎng)線與弦的延長(zhǎng)線相交于點(diǎn),為⊙上一點(diǎn),,交于點(diǎn).求證:~.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
分三種情況,任務(wù)A排在第一位時(shí),E排在第二位;任務(wù)A排在第二位時(shí),E排在第三位;任務(wù)A排在第三位時(shí),E排在第四位,結(jié)合任務(wù)B和C不能相鄰,分別求出三種情況的排列方法,即可得到答案.【詳解】六項(xiàng)不同的任務(wù)分別為A、B、C、D、E、F,如果任務(wù)A排在第一位時(shí),E排在第二位,剩下四個(gè)位置,先排好D、F,再在D、F之間的3個(gè)空位中插入B、C,此時(shí)共有排列方法:;如果任務(wù)A排在第二位時(shí),E排在第三位,則B,C可能分別在A、E的兩側(cè),排列方法有,可能都在A、E的右側(cè),排列方法有;如果任務(wù)A排在第三位時(shí),E排在第四位,則B,C分別在A、E的兩側(cè);所以不同的執(zhí)行方案共有種.【點(diǎn)睛】本題考查了排列組合問(wèn)題,考查了學(xué)生的邏輯推理能力,屬于中檔題.2、A【解析】
先根據(jù)得到為的重心,從而,故可得,利用可得,故可計(jì)算的值.【詳解】因?yàn)樗詾榈闹匦?,所?所以,所以,因?yàn)?,所以,故選A.【點(diǎn)睛】對(duì)于,一般地,如果為的重心,那么,反之,如果為平面上一點(diǎn),且滿足,那么為的重心.3、B【解析】
將三視圖還原成幾何體,然后分別求出各個(gè)面的面積,得到答案.【詳解】由三視圖可得,該幾何體的直觀圖如圖所示,延長(zhǎng)交于點(diǎn),其中,,,所以表面積.故選B項(xiàng).【點(diǎn)睛】本題考查三視圖還原幾何體,求組合體的表面積,屬于中檔題4、C【解析】展開(kāi)式的通項(xiàng)為,因?yàn)檎归_(kāi)式中含有常數(shù)項(xiàng),所以,即為整數(shù),故n的最小值為1.所以.故選C點(diǎn)睛:求二項(xiàng)展開(kāi)式有關(guān)問(wèn)題的常見(jiàn)類(lèi)型及解題策略(1)求展開(kāi)式中的特定項(xiàng).可依據(jù)條件寫(xiě)出第項(xiàng),再由特定項(xiàng)的特點(diǎn)求出值即可.(2)已知展開(kāi)式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫(xiě)出第項(xiàng),由特定項(xiàng)得出值,最后求出其參數(shù).5、C【解析】
對(duì)選項(xiàng)逐個(gè)驗(yàn)證即得答案.【詳解】對(duì)于,,是偶函數(shù),故選項(xiàng)錯(cuò)誤;對(duì)于,,定義域?yàn)椋谏喜皇菃握{(diào)函數(shù),故選項(xiàng)錯(cuò)誤;對(duì)于,當(dāng)時(shí),;當(dāng)時(shí),;又時(shí),.綜上,對(duì),都有,是奇函數(shù).又時(shí),是開(kāi)口向上的拋物線,對(duì)稱(chēng)軸,在上單調(diào)遞增,是奇函數(shù),在上是單調(diào)遞增函數(shù),故選項(xiàng)正確;對(duì)于,在上單調(diào)遞增,在上單調(diào)遞增,但,在上不是單調(diào)函數(shù),故選項(xiàng)錯(cuò)誤.故選:.【點(diǎn)睛】本題考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.6、C【解析】
①利用之間的代換判斷出對(duì)稱(chēng)軸的條數(shù);②利用基本不等式求解出到原點(diǎn)的距離最大值;③將面積轉(zhuǎn)化為的關(guān)系式,然后根據(jù)基本不等式求解出最大值;④根據(jù)滿足的不等式判斷出四葉草與對(duì)應(yīng)圓的關(guān)系,從而判斷出面積是否小于.【詳解】①:當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對(duì)稱(chēng);當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對(duì)稱(chēng);當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對(duì)稱(chēng);當(dāng)變?yōu)闀r(shí),不變,所以四葉草圖象關(guān)于軸對(duì)稱(chēng);綜上可知:有四條對(duì)稱(chēng)軸,故正確;②:因?yàn)?,所以,所以,所以,取等?hào)時(shí),所以最大距離為,故錯(cuò)誤;③:設(shè)任意一點(diǎn),所以圍成的矩形面積為,因?yàn)椋?,所以,取等?hào)時(shí),所以圍成矩形面積的最大值為,故正確;④:由②可知,所以四葉草包含在圓的內(nèi)部,因?yàn)閳A的面積為:,所以四葉草的面積小于,故正確.故選:C.【點(diǎn)睛】本題考查曲線與方程的綜合運(yùn)用,其中涉及到曲線的對(duì)稱(chēng)性分析以及基本不等式的運(yùn)用,難度較難.分析方程所表示曲線的對(duì)稱(chēng)性,可通過(guò)替換方程中去分析證明.7、D【解析】
列出所有圓內(nèi)的整數(shù)點(diǎn)共有37個(gè),滿足條件的有7個(gè),相除得到概率.【詳解】因?yàn)槭钦麛?shù),所以所有滿足條件的點(diǎn)是位于圓(含邊界)內(nèi)的整數(shù)點(diǎn),滿足條件的整數(shù)點(diǎn)有共37個(gè),滿足的整數(shù)點(diǎn)有7個(gè),則所求概率為.故選:.【點(diǎn)睛】本題考查了古典概率的計(jì)算,意在考查學(xué)生的應(yīng)用能力.8、D【解析】
根據(jù)圖形中的信息,可得頻率、平均值的估計(jì)、眾數(shù)、中位數(shù),從而得到答案.【詳解】對(duì)A,從圖中數(shù)據(jù)變化看,PMI值不低于50%的月份有4個(gè),所以12個(gè)月的PMI值不低于50%的頻率為,故A正確;對(duì)B,由圖可以看出,PMI值的平均值低于50%,故B正確;對(duì)C,12個(gè)月的PMI值的眾數(shù)為49.4%,故C正確,;對(duì)D,12個(gè)月的PMI值的中位數(shù)為49.6%,故D錯(cuò)誤故選:D.【點(diǎn)睛】本題考查頻率、平均值的估計(jì)、眾數(shù)、中位數(shù)計(jì)算,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.9、D【解析】
設(shè),,,根據(jù)可得①,再根據(jù)又②,由①②可得,化簡(jiǎn)可得,即可求出離心率.【詳解】解:設(shè),,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故選:D.【點(diǎn)睛】本題考查雙曲線的方程和性質(zhì),考查了斜率的計(jì)算,離心率的求法,屬于基礎(chǔ)題和易錯(cuò)題.10、A【解析】
由已知新運(yùn)算的意義就是取得中的最小值,因此函數(shù),只有選項(xiàng)中的圖象符合要求,故選A.11、A【解析】
根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點(diǎn)求出,化簡(jiǎn)即得所求.【詳解】由圖像知,,,解得,因?yàn)楹瘮?shù)過(guò)點(diǎn),所以,,即,解得,因?yàn)?,所以?故選:A【點(diǎn)睛】本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.12、B【解析】
結(jié)合隨機(jī)模擬概念和幾何概型公式計(jì)算即可【詳解】如圖,由幾何概型公式可知:.故選:B【點(diǎn)睛】本題考查隨機(jī)模擬的概念和幾何概型,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)與已知直線垂直關(guān)系,設(shè)出所求直線方程,將已知圓圓心坐標(biāo)代入,即可求解.【詳解】圓心為,所求直線與直線垂直,設(shè)為,圓心代入,可得,所以所求的直線方程為.故答案為:.【點(diǎn)睛】本題考查圓的方程、直線方程求法,注意直線垂直關(guān)系的靈活應(yīng)用,屬于基礎(chǔ)題.14、【解析】
由可得集合是奇數(shù)集,由此可以得出結(jié)果.【詳解】解:因?yàn)樗约现械脑貫槠鏀?shù),所以.【點(diǎn)睛】本題考查了集合的交集,解析出集合B中元素的性質(zhì)是本題解題的關(guān)鍵.15、1【解析】
由求出,代入,進(jìn)行數(shù)量積的運(yùn)算即得.【詳解】,存在實(shí)數(shù),使得.不共線,.,,,的夾角為30°,.故答案為:1.【點(diǎn)睛】本題考查向量共線定理和平面向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.16、【解析】Aa設(shè)正四棱柱的高為h得到故得到正四棱柱的體積為故答案為54.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)函數(shù)單調(diào)減區(qū)間為;單調(diào)增區(qū)間為.(2)(3)【解析】
(1)據(jù)導(dǎo)數(shù)和函數(shù)單調(diào)性的關(guān)系即可求出;(2)分離參數(shù),可得對(duì)任意的及任意的恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值即可求出的范圍;(3)先求導(dǎo),再分類(lèi)討論,根據(jù)導(dǎo)數(shù)和函數(shù)單調(diào)性以及最值得關(guān)系即可求出的范圍【詳解】解:(1)當(dāng)時(shí),因?yàn)?當(dāng)時(shí),;當(dāng)時(shí),.所以函數(shù)單調(diào)減區(qū)間為;單調(diào)增區(qū)間為.(2)由,得,由于,所以對(duì)任意的及任意的恒成立,由于,所以,所以對(duì)任意的恒成立,設(shè),,則,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以,所以.(3)由,得,其中.①若時(shí),則,所以函數(shù)在上單調(diào)遞增,所以函數(shù)至多有一個(gè)零點(diǎn),不合題意;②若時(shí),令,得.由第(2)小題,知:當(dāng)時(shí),,所以,所以,所以當(dāng)時(shí),函數(shù)的值域?yàn)椋?存在,使得,即,①且當(dāng)時(shí),,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.因?yàn)楹瘮?shù)有兩個(gè)零點(diǎn),,所以.②設(shè),,則,所以函數(shù)在單調(diào)遞增,由于,所以當(dāng)時(shí),.所以,②式中的,又由①式,得.由第(1)小題可知,當(dāng)時(shí),函數(shù)在上單調(diào)遞減,所以,即.當(dāng)時(shí),(?。┯捎?所以得,又因?yàn)?且函數(shù)在上單調(diào)遞減,函數(shù)的圖象在上不間斷,所以函數(shù)在上恰有一個(gè)零點(diǎn);(ⅱ)由于,令,設(shè),,由于時(shí),,,所以設(shè),即.由①式,得,當(dāng)時(shí),,且,同理可得函數(shù)在上也恰有一個(gè)零點(diǎn).綜上,.【點(diǎn)睛】本題考查含參數(shù)的導(dǎo)數(shù)的單調(diào)性,利用導(dǎo)數(shù)求不等式恒成立問(wèn)題,以及考查函數(shù)零點(diǎn)問(wèn)題,考查學(xué)生的計(jì)算能力,是綜合性較強(qiáng)的題.18、(1);(2).【解析】
(1)直接根據(jù)特殊角的三角函數(shù)值求出,結(jié)合正弦定理求出;(2)結(jié)合第一問(wèn)的結(jié)論以及余弦定理即可求解.【詳解】解:(1)∵,且,∴,由正弦定理,∴,∵∴銳角,∴(2)∵,∴∴∴在中,由余弦定理得∴【點(diǎn)睛】本題主要考查了正弦定理和余弦定理的運(yùn)用.考查了學(xué)生對(duì)三角函數(shù)基礎(chǔ)知識(shí)的綜合運(yùn)用.19、(Ⅰ)(Ⅱ)證明見(jiàn)解析【解析】
(Ⅰ)由an+2=(﹣1)n(an﹣1)+2an+1,對(duì)分奇偶討論,即可得;(Ⅱ)由(Ⅰ)得,用錯(cuò)位相減法求出,運(yùn)用分析法證明即可.【詳解】(Ⅰ),當(dāng)為奇數(shù)時(shí),,又由,得,當(dāng)為偶數(shù)時(shí),,又由a2=3,得,;(Ⅱ)由(1)得,則①②①-②可得:,,若證明Sn,則需要證明,又,即證明,即證,又顯然成立,故Sn得證.【點(diǎn)睛】本題主要考查了由遞推公式求通項(xiàng)公式,錯(cuò)位相減法求前項(xiàng)和,分析法證明不等式,考查了分類(lèi)討論的思想,考查了學(xué)生的運(yùn)算求解與邏輯推理能力.20、(1)證明見(jiàn)解析(2)【解析】
(1)首先證明,,,∴平面.即可得到平面,.(2)以為坐標(biāo)原點(diǎn),,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系,分別求出平面和平面的法向量,帶入公式求解即可.【詳解】(1)∵平面,平面,∴.又∵四邊形是正方形,∴.∵,∴平面.∵平面,∴.又∵,為的中點(diǎn),∴.∵,∴平面.∵平面,∴.(2)∵平面,,∴平面.以為坐標(biāo)原點(diǎn),,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系.如圖所示:則,,,.∴,,.設(shè)為平面的法向量,則,得,令,則.由題意知為平面的一個(gè)法向量,∴,∴平面與平面所成角的正弦值為.【點(diǎn)睛】本題第一問(wèn)考查線線垂直,先證線面垂直時(shí)解題關(guān)鍵,第二問(wèn)考
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《肺細(xì)胞病理學(xué)》課件
- 《用圖表展示數(shù)據(jù)》課件
- 廣東省汕尾市海豐縣2023-2024學(xué)年八年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷
- 《胃造瘺護(hù)理》課件
- 養(yǎng)老院老人健康監(jiān)測(cè)人員激勵(lì)制度
- 拆除太陽(yáng)能熱水器的協(xié)議書(shū)(2篇)
- 2024年塔吊租賃合同及施工安全協(xié)議3篇
- 2025年鄭州貨車(chē)從業(yè)資格考試題庫(kù)
- 2025年黑河貨運(yùn)從業(yè)資格證考試
- 《HELLP綜合征與HUS》課件
- 中小學(xué)中層干部培訓(xùn)
- 手術(shù)室護(hù)理不良事件警示教育
- 景觀燈柱施工方案
- 人教版九年級(jí)化學(xué)下冊(cè)第十一單元課題2化學(xué)與可持續(xù)發(fā)展課件
- 眾創(chuàng)空間雙創(chuàng)示范基地建設(shè)實(shí)施方案
- 《財(cái)務(wù)管理》1-7章習(xí)題(學(xué)生)
- 信息安全培訓(xùn)-基礎(chǔ)概念培訓(xùn)v1.7
- 藝術(shù)哲學(xué):美是如何誕生的學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 3.2 推動(dòng)高質(zhì)量發(fā)展 課件高中政治統(tǒng)編版必修二經(jīng)濟(jì)與社會(huì)
- 板框壓濾機(jī)方案
- 三年級(jí)數(shù)學(xué)(上)計(jì)算題專(zhuān)項(xiàng)練習(xí)附答案
評(píng)論
0/150
提交評(píng)論