版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
西藏林芝市第二中學(xué)2025屆數(shù)學(xué)高一下期末經(jīng)典模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”意思是:“一女子善于織布,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這女子每天分別織布多少?”根據(jù)上題的已知條件,可求得該女子第3天所織布的尺數(shù)為A.2031 B.35 C.82.已知是定義在上的奇函數(shù),且滿足,當(dāng)時(shí),,則等于()A.-1 B. C. D.13.已知在中,內(nèi)角的對(duì)邊分別為,若,則等于()A. B. C. D.4.一幾何體的三視圖如圖所示,則該幾何體的表面積為()A.16 B.20 C.24 D.285.已知實(shí)數(shù)x,y滿足約束條件y≤1x≤2x+2y-2≥0,則A.1 B.2 C.3 D.46.在△ABC中,已知tan=sinC,則△ABC的形狀為()A.正三角形 B.等腰三角形C.直角三角形 D.等腰直角三角形7.若,,表示三條不重合的直線,,表示兩個(gè)不同的平面,則下列命題中,正確的個(gè)數(shù)是()①若,,則②,,,則③若,,則④若,,則A.0 B.1 C.2 D.38.已知函數(shù),下列結(jié)論不正確的是(
)A.函數(shù)的最小正周期為B.函數(shù)在區(qū)間內(nèi)單調(diào)遞減C.函數(shù)的圖象關(guān)于軸對(duì)稱D.把函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度可得到的圖象9.已知:,則()A. B. C. D.10.從1,2,3,…,9這個(gè)9個(gè)數(shù)中任取5個(gè)不同的數(shù),則這5個(gè)數(shù)的中位數(shù)是5的概率等于()A.57 B.59 C.2二、填空題:本大題共6小題,每小題5分,共30分。11.為了研究問題方便,有時(shí)將余弦定理寫成:,利用這個(gè)結(jié)構(gòu)解決如下問題:若三個(gè)正實(shí)數(shù),滿足,,,則_______.12.在四面體A-BCD中,AB=AC=DB=DC=BC,且四面體A-BCD的最大體積為,則四面體A-BCD外接球的表面積為________.13.如圖,圓錐型容器內(nèi)盛有水,水深,水面直徑放入一個(gè)鐵球后,水恰好把鐵球淹沒,則該鐵球的體積為________14._____________.15.已知數(shù)列滿足,,,記數(shù)列的前項(xiàng)和為,則________.16.已知函數(shù),下列結(jié)論中:函數(shù)關(guān)于對(duì)稱;函數(shù)關(guān)于對(duì)稱;函數(shù)在是增函數(shù),將的圖象向右平移可得到的圖象.其中正確的結(jié)論序號(hào)為______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.化簡(jiǎn).18.已知關(guān)于的一元二次函數(shù),從集合中隨機(jī)取一個(gè)數(shù)作為此函數(shù)的二次項(xiàng)系數(shù),從集合中隨機(jī)取一個(gè)數(shù)作為此函數(shù)的一次項(xiàng)系數(shù).(1)若,,求函數(shù)有零點(diǎn)的概率;(2)若,求函數(shù)在區(qū)間上是增函數(shù)的概率.19.已知向量(cosx+sinx,1),(sinx,),函數(shù).(1)若f(θ)=3且θ∈(0,π),求θ;(2)求函數(shù)f(x)的最小正周期T及單調(diào)遞增區(qū)間.20.已知等差數(shù)列滿足,前項(xiàng)和.(1)求的通項(xiàng)公式(2)設(shè)等比數(shù)列滿足,,求的通項(xiàng)公式及的前項(xiàng)和.21.已知函數(shù).(1)求的最小正周期;(2)求在區(qū)間上的最大值和最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
由題意可得該女子每天織布的尺數(shù)構(gòu)成一個(gè)等比數(shù)列,且數(shù)列的公比為2,由題意求出數(shù)列的首項(xiàng)后可得第3天織布的尺數(shù).【詳解】由題意可得該女子每天織布的尺數(shù)構(gòu)成一個(gè)等比數(shù)列,且數(shù)列的公比為2,前5項(xiàng)的和為5,設(shè)首項(xiàng)為a1,前n項(xiàng)和為S則由題意得S5∴a1∴a3即該女子第3天所織布的尺數(shù)為2031故選A.【點(diǎn)睛】本題以中國(guó)古文化為載體考查等比數(shù)列的基本運(yùn)算,解題的關(guān)鍵是正確理解題意,將問題轉(zhuǎn)化成等比數(shù)列的知識(shí)求解,考查閱讀理解和轉(zhuǎn)化、計(jì)算能力.2、C【解析】
根據(jù)求得函數(shù)的周期,再結(jié)合奇偶性求得所求表達(dá)式的值.【詳解】由于故函數(shù)是周期為的周期函數(shù),故,故選C.【點(diǎn)睛】本小題主要考查函數(shù)的周期性,考查函數(shù)的奇偶性,考查函數(shù)值的求法,屬于基礎(chǔ)題.3、A【解析】
由題意變形,運(yùn)用余弦定理,可得cosB,再由同角的平方關(guān)系,可得所求值.【詳解】2b2﹣2a2=ac+2c2,可得a2+c2﹣b2ac,則cosB,可得B<π,即有sinB.故選A.【點(diǎn)睛】本題考查余弦定理的運(yùn)用,考查同角的平方關(guān)系,以及運(yùn)算能力,屬于中檔題.4、B【解析】
根據(jù)三視圖可還原幾何體,根據(jù)長(zhǎng)度關(guān)系依次計(jì)算出各個(gè)側(cè)面和上下底面的面積,加和得到表面積.【詳解】有三視圖可得幾何體的直觀圖如下圖所示:其中:,,,則:,,,,幾何體表面積:本題正確選項(xiàng):【點(diǎn)睛】本題考查幾何體表面積的求解問題,關(guān)鍵是能夠根據(jù)三視圖準(zhǔn)確還原幾何體,從而根據(jù)長(zhǎng)度關(guān)系可依次計(jì)算出各個(gè)面的面積.5、C【解析】
作出可行域,作直線l:x+y=0,平移直線l可得最優(yōu)解.【詳解】作出可行域,如圖ΔABC內(nèi)部(含邊界),作直線l:x+y=0,平移直線l,當(dāng)直線l過點(diǎn)C(2,1)時(shí),x+y=2+1=3為最大值.故選C.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃,解題關(guān)鍵是作出可行域.6、C【解析】
解:因?yàn)檫xC7、B【解析】
①根據(jù)空間線線位置關(guān)系的定義判定;②根據(jù)面面平行的性質(zhì)判定;③根據(jù)空間線線垂直的定義判定;④根據(jù)線面垂直的性質(zhì)判定.【詳解】解:①若,,與的位置關(guān)系不定,故錯(cuò);②若,,,則或、異面,故錯(cuò);③若,,則或、異面,故錯(cuò);④若,,則,故正確.故選:.【點(diǎn)睛】本題考查了空間線面位置關(guān)系,考查了空間想象能力,屬于中檔題.8、D【解析】
利用余弦函數(shù)的性質(zhì)對(duì)A、B、C三個(gè)選項(xiàng)逐一判斷,再利用平移“左加右減”及誘導(dǎo)公式得出,進(jìn)而得出答案.【詳解】由題意,函數(shù)其最小正周期為,故選項(xiàng)A正確;函數(shù)在上為減函數(shù),故選項(xiàng)B正確;函數(shù)為偶函數(shù),關(guān)于軸對(duì)稱,故選項(xiàng)C正確把函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度可得,所以選項(xiàng)D不正確.故答案為D【點(diǎn)睛】本題主要考查了余弦函數(shù)的性質(zhì),以及誘導(dǎo)公式的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.9、A【解析】
觀察已知角與待求的角之間的特殊關(guān)系,運(yùn)用余弦的二倍角公式和誘導(dǎo)公式求解.【詳解】令,則,所以,所以,故選A.【點(diǎn)睛】本題關(guān)鍵在于觀察出已知角與待求的角之間的特殊關(guān)系,屬于中檔題.10、C【解析】試題分析:設(shè)事件為“從1,2,3,…,9這9個(gè)數(shù)中5個(gè)數(shù)的中位數(shù)是5”,則基本事件總數(shù)為種,事件所包含的基本事件的總數(shù)為:,所以由古典概型的計(jì)算公式知,,故應(yīng)選.考點(diǎn):1.古典概型;二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
設(shè)的角、、的對(duì)邊分別為、、,在內(nèi)取點(diǎn),使得,設(shè),,,利用余弦定理得出的三邊長(zhǎng),由此計(jì)算出的面積,再利用可得出的值.【詳解】設(shè)的角、、的對(duì)邊分別為、、,在內(nèi)取點(diǎn),使得,設(shè),,,由余弦定理得,,同理可得,,,則,的面積為,另一方面,解得,故答案為.【點(diǎn)睛】本題考查余弦定理的應(yīng)用,問題的關(guān)鍵在于將題中的等式轉(zhuǎn)化為余弦定理,并轉(zhuǎn)化為三角形的面積來進(jìn)行計(jì)算,考查化歸與轉(zhuǎn)化思想以及數(shù)形結(jié)合思想,屬于中等題.12、【解析】
當(dāng)面ABC面與BCD垂直時(shí),四面體A-BCD的體積最大,根據(jù)最大體積為求出四面體的邊長(zhǎng),又△ABC和△BCD是等腰直角三角形,所以四面體A-BCD外接球的球心位于的中點(diǎn),從而得到半徑,即可求解.【詳解】如圖所示:當(dāng)面ABC面與BCD垂直時(shí),四面體A-BCD的體積最大為,又AB=AC=DB=DC=BC,所以△ABC和△BCD是等腰直角三角形,所以四面體A-BCD外接球的球心為的中點(diǎn),又,解得,,,所以四面體A-BCD外接球的半徑故四面體A-BCD外接球的表面積為.【點(diǎn)睛】本題考查多面體的外接圓及相關(guān)計(jì)算,多面體外接圓問題關(guān)鍵在圓心和半徑.13、【解析】
通過將圖形轉(zhuǎn)化為平面圖形,然后利用放球前后體積等量關(guān)系求得球的體積.【詳解】作出相關(guān)圖形,顯然,因此,因此放球前,球O與邊相切于點(diǎn)M,故,則,所以,,所以放球后,而,而,解得.【點(diǎn)睛】本題主要考查圓錐體積與球體積的相關(guān)計(jì)算,建立體積等量關(guān)系是解決本題的關(guān)鍵,意在考查學(xué)生的劃歸能力,計(jì)算能力和分析能力.14、【解析】,故填.15、7500【解析】
討論的奇偶性,分別化簡(jiǎn)遞推公式,根據(jù)等差數(shù)列的定義得的通項(xiàng)公式,進(jìn)而可求.【詳解】當(dāng)是奇數(shù)時(shí),=﹣1,由,得,所以,,,…,…是以為首項(xiàng),以2為公差的等差數(shù)列,當(dāng)為偶數(shù)時(shí),=1,由,得,所以,,,…,…是首項(xiàng)為,以4為公差的等差數(shù)列,則,所以.故答案為:7500【點(diǎn)睛】本題考查數(shù)列遞推公式的化簡(jiǎn),等差數(shù)列的通項(xiàng)公式,以及等差數(shù)列前n項(xiàng)和公式的應(yīng)用,也考查了分類討論思想,屬于中檔題.16、【解析】
把化成的型式即可。【詳解】由題意得所以對(duì)稱軸為,對(duì),當(dāng)時(shí),對(duì)稱中心為,對(duì)。的增區(qū)間為,對(duì)向右平移得。錯(cuò)【點(diǎn)睛】本題考查三角函數(shù)的性質(zhì),三角函數(shù)變換,意在考查學(xué)生對(duì)三角函數(shù)的圖像與性質(zhì)的掌握情況。三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】
利用誘導(dǎo)公式進(jìn)行化簡(jiǎn),即可得到答案.【詳解】原式.【點(diǎn)睛】本題考查誘導(dǎo)公式的應(yīng)用,考查運(yùn)算求解能力,求解時(shí)注意奇變偶不變,符號(hào)看象限這一口訣的應(yīng)用.18、(1);(2)【解析】
(1)依次列出所有可能的情況,求出滿足的情況總數(shù),即可得到概率;(2)列出不等關(guān)系,表示出平面區(qū)域,求出滿足表示的區(qū)域的面積,即可得到概率.【詳解】(1)由題可得,,從集合中隨機(jī)取一個(gè)數(shù)作為此函數(shù)的二次項(xiàng)系數(shù),從集合中隨機(jī)取一個(gè)數(shù)作為此函數(shù)的一次項(xiàng)系數(shù),記為,這樣的有序數(shù)對(duì)共有,9種情況;函數(shù)有零點(diǎn),即滿足,滿足條件的有:,6種情況,所以其概率為;(2),滿足條件的有序數(shù)對(duì),,即平面直角坐標(biāo)系內(nèi)區(qū)域:矩形及內(nèi)部區(qū)域,面積為4,函數(shù)在區(qū)間上是增函數(shù),即滿足,,,即,平面直角坐標(biāo)系內(nèi)區(qū)域:直角梯形及內(nèi)部區(qū)域,面積為3,所以其概率為.【點(diǎn)睛】此題考查古典概型與幾何概型,關(guān)鍵在于準(zhǔn)確得出二次函數(shù)有零點(diǎn)和在區(qū)間上是增函數(shù),分別所對(duì)應(yīng)的基本事件個(gè)數(shù)以及對(duì)應(yīng)區(qū)域的面積.19、(1)θ(2)最小正周期為π;單調(diào)遞增區(qū)間為[kπ,kπ],k∈Z【解析】
(1)計(jì)算平面向量的數(shù)量積得出函數(shù)f(x)的解析式,求出f(θ)=3時(shí)θ的值;
(2)根據(jù)函數(shù)f(x)的解析式,求出它的最小正周期和單調(diào)遞增區(qū)間.【詳解】(1)向量(cosx+sinx,1),(sinx,),函數(shù)=sinx(cosx+sinx)sinxcosx+sin2xsin2xcos2x+2=sin(2x)+2,f(θ)=3時(shí),sin(2θ)=1,解得2θ2kπ,k∈Z,即θkπ,k∈Z;又θ∈(0,π),所以θ;(2)函數(shù)f(x)=sin(2x)+2,它的最小正周期為Tπ;令2kπ≤2x2kπ,k∈Z,kπ≤xkπ,k∈Z,所以f(x)的單調(diào)遞增區(qū)間為[kπ,kπ],k∈Z.【點(diǎn)睛】本題考查了平面向量的數(shù)量積計(jì)算問題,也考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題.20、(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版班班通設(shè)備與物聯(lián)網(wǎng)結(jié)合合同2篇
- 二零二五年綠色生態(tài)住宅小區(qū)消防工程設(shè)計(jì)與施工合同3篇
- 二零二五版股份制企業(yè)股份自愿轉(zhuǎn)讓與投資者關(guān)系維護(hù)合同3篇
- 二零二五年度監(jiān)理合同延期補(bǔ)充協(xié)議-責(zé)任劃分與風(fēng)險(xiǎn)承擔(dān)3篇
- 二零二五版中央空調(diào)清洗保養(yǎng)及能耗管理服務(wù)合同3篇
- 二零二五年度國(guó)有資產(chǎn)管理委托服務(wù)合同2篇
- 二零二五版股票質(zhì)押擔(dān)保合同范本編制與解析3篇
- 二零二五年度風(fēng)力發(fā)電項(xiàng)目融資合同2篇
- 二零二五年美發(fā)師國(guó)際交流聘用合同2篇
- 二零二五年度酒店地毯翻新與維護(hù)服務(wù)合同范本3篇
- 五年級(jí)上冊(cè)小數(shù)乘除豎式計(jì)算題200道及答案
- 2024年東南亞工業(yè)氣瓶市場(chǎng)深度研究及預(yù)測(cè)報(bào)告
- 棉花良種選育與遺傳育種
- 簡(jiǎn)易勞務(wù)承包合同范本
- SH/T 3078-2024 立式圓筒形料倉(cāng)工程設(shè)計(jì)規(guī)范(正式版)
- 快遞驛站承包協(xié)議書
- 基于視覺果蔬識(shí)別的稱重系統(tǒng)設(shè)計(jì)
- 體育初中學(xué)生學(xué)情分析總結(jié)報(bào)告
- 部編版語文中考必背文言文7-9年級(jí)
- 農(nóng)藥合成研發(fā)項(xiàng)目流程
- 國(guó)家職業(yè)技術(shù)技能標(biāo)準(zhǔn) 4-04-04-02 網(wǎng)絡(luò)與信息安全管理員(數(shù)據(jù)安全管理員)S 2024年版
評(píng)論
0/150
提交評(píng)論