江蘇省射陽實(shí)驗(yàn)初中達(dá)標(biāo)名校2024年中考數(shù)學(xué)全真模擬試題含解析_第1頁
江蘇省射陽實(shí)驗(yàn)初中達(dá)標(biāo)名校2024年中考數(shù)學(xué)全真模擬試題含解析_第2頁
江蘇省射陽實(shí)驗(yàn)初中達(dá)標(biāo)名校2024年中考數(shù)學(xué)全真模擬試題含解析_第3頁
江蘇省射陽實(shí)驗(yàn)初中達(dá)標(biāo)名校2024年中考數(shù)學(xué)全真模擬試題含解析_第4頁
江蘇省射陽實(shí)驗(yàn)初中達(dá)標(biāo)名校2024年中考數(shù)學(xué)全真模擬試題含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江蘇省射陽實(shí)驗(yàn)初中達(dá)標(biāo)名校2024年中考數(shù)學(xué)全真模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.一組數(shù)據(jù):6,3,4,5,7的平均數(shù)和中位數(shù)分別是()A.5,5 B.5,6 C.6,5 D.6,62.如圖,矩形ABCD中,E為DC的中點(diǎn),AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點(diǎn)F,AP、BE相交于點(diǎn)O.下列結(jié)論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④3.某公園里鮮花的擺放如圖所示,第①個(gè)圖形中有3盆鮮花,第②個(gè)圖形中有6盆鮮花,第③個(gè)圖形中有11盆鮮花,……,按此規(guī)律,則第⑦個(gè)圖形中的鮮花盆數(shù)為()A.37 B.38 C.50 D.514.已知關(guān)于x的二次函數(shù)y=x2﹣2x﹣2,當(dāng)a≤x≤a+2時(shí),函數(shù)有最大值1,則a的值為()A.﹣1或1 B.1或﹣3 C.﹣1或3 D.3或﹣35.如圖,點(diǎn)A、B、C在⊙O上,∠OAB=25°,則∠ACB的度數(shù)是()A.135° B.115° C.65° D.50°6.一次函數(shù)滿足,且隨的增大而減小,則此函數(shù)的圖象不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知拋物線y=ax2+bx+c的圖象如圖所示,頂點(diǎn)為(4,6),則下列說法錯(cuò)誤的是()A.b2>4ac B.a(chǎn)x2+bx+c≤6C.若點(diǎn)(2,m)(5,n)在拋物線上,則m>n D.8a+b=08.如圖,在四邊形ABCD中,∠A+∠D=α,∠ABC的平分線與∠BCD的平分線交于點(diǎn)P,則∠P=()A.90°-α B.90°+α C. D.360°-α9.已知方程的兩個(gè)解分別為、,則的值為()A. B. C.7 D.310.如圖,將一正方形紙片沿圖(1)、(2)的虛線對(duì)折,得到圖(3),然后沿圖(3)中虛線的剪去一個(gè)角,展開得平面圖形(4),則圖(3)的虛線是()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.已知甲、乙兩組數(shù)據(jù)的折線圖如圖,設(shè)甲、乙兩組數(shù)據(jù)的方差分別為S甲2、S乙2,則S甲2__S乙2(填“>”、“=”、“<”)12.如圖,在菱形ABCD中,AB=,∠B=120°,點(diǎn)E是AD邊上的一個(gè)動(dòng)點(diǎn)(不與A,D重合),EF∥AB交BC于點(diǎn)F,點(diǎn)G在CD上,DG=DE.若△EFG是等腰三角形,則DE的長為_____.13.反比例函數(shù)的圖象經(jīng)過點(diǎn)和,則______.14.如圖,矩形ABCD中,AB=4,BC=8,P,Q分別是直線BC,AB上的兩個(gè)動(dòng)點(diǎn),AE=2,△AEQ沿EQ翻折形成△FEQ,連接PF,PD,則PF+PD的最小值是____.15.如圖,在中國象棋的殘局上建立平面直角坐標(biāo)系,如果“相”和“兵”的坐標(biāo)分別是(3,-1)和(-3,1),那么“卒”的坐標(biāo)為_____.

16.一個(gè)不透明的袋子中裝有5個(gè)球,其中3個(gè)紅球、2個(gè)黑球,這些球除顏色外無其它差別,現(xiàn)從袋子中隨機(jī)摸出一個(gè)球,則它是黑球的概率是_____.三、解答題(共8題,共72分)17.(8分)問題提出(1)如圖1,在△ABC中,∠A=75°,∠C=60°,AC=6,求△ABC的外接圓半徑R的值;問題探究(2)如圖2,在△ABC中,∠BAC=60°,∠C=45°,AC=8,點(diǎn)D為邊BC上的動(dòng)點(diǎn),連接AD以AD為直徑作⊙O交邊AB、AC分別于點(diǎn)E、F,接E、F,求EF的最小值;問題解決(3)如圖3,在四邊形ABCD中,∠BAD=90°,∠BCD=30°,AB=AD,BC+CD=12,連接AC,線段AC的長是否存在最小值,若存在,求最小值:若不存在,請(qǐng)說明理由.18.(8分)某校對(duì)六至九年級(jí)學(xué)生圍繞“每天30分鐘的大課間,你最喜歡的體育活動(dòng)項(xiàng)目是什么?(只寫一項(xiàng))”的問題,對(duì)在校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,從而得到一組數(shù)據(jù).如圖是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問題:該校對(duì)多少學(xué)生進(jìn)行了抽樣調(diào)查?本次抽樣調(diào)查中,最喜歡籃球活動(dòng)的有多少?占被調(diào)查人數(shù)的百分比是多少?若該校九年級(jí)共有200名學(xué)生,如圖是根據(jù)各年級(jí)學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計(jì)圖,請(qǐng)估計(jì)全校六至九年級(jí)學(xué)生中最喜歡跳繩活動(dòng)的人數(shù)約為多少?19.(8分)某藥廠銷售部門根據(jù)市場調(diào)研結(jié)果,對(duì)該廠生產(chǎn)的一種新型原料藥未來兩年的銷售進(jìn)行預(yù)測,并建立如下模型:設(shè)第t個(gè)月該原料藥的月銷售量為P(單位:噸),P與t之間存在如圖所示的函數(shù)關(guān)系,其圖象是函數(shù)P=(0<t≤8)的圖象與線段AB的組合;設(shè)第t個(gè)月銷售該原料藥每噸的毛利潤為Q(單位:萬元),Q與t之間滿足如下關(guān)系:Q=(1)當(dāng)8<t≤24時(shí),求P關(guān)于t的函數(shù)解析式;(2)設(shè)第t個(gè)月銷售該原料藥的月毛利潤為w(單位:萬元)①求w關(guān)于t的函數(shù)解析式;②該藥廠銷售部門分析認(rèn)為,336≤w≤513是最有利于該原料藥可持續(xù)生產(chǎn)和銷售的月毛利潤范圍,求此范圍所對(duì)應(yīng)的月銷售量P的最小值和最大值.20.(8分)已知拋物線的開口向上頂點(diǎn)為P(1)若P點(diǎn)坐標(biāo)為(4,一1),求拋物線的解析式;(2)若此拋物線經(jīng)過(4,一1),當(dāng)-1≤x≤2時(shí),求y的取值范圍(用含a的代數(shù)式表示)(3)若a=1,且當(dāng)0≤x≤1時(shí),拋物線上的點(diǎn)到x軸距離的最大值為6,求b的值21.(8分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點(diǎn)D.過點(diǎn)D作EF⊥AC,垂足為E,且交AB的延長線于點(diǎn)F.求證:EF是⊙O的切線;已知AB=4,AE=1.求BF的長.22.(10分)如圖,在等腰直角△ABC中,∠C是直角,點(diǎn)A在直線MN上,過點(diǎn)C作CE⊥MN于點(diǎn)E,過點(diǎn)B作BF⊥MN于點(diǎn)F.(1)如圖1,當(dāng)C,B兩點(diǎn)均在直線MN的上方時(shí),①直接寫出線段AE,BF與CE的數(shù)量關(guān)系.②猜測線段AF,BF與CE的數(shù)量關(guān)系,不必寫出證明過程.(2)將等腰直角△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)至圖2位置時(shí),線段AF,BF與CE又有怎樣的數(shù)量關(guān)系,請(qǐng)寫出你的猜想,并寫出證明過程.(3)將等腰直角△ABC繞著點(diǎn)A繼續(xù)旋轉(zhuǎn)至圖3位置時(shí),BF與AC交于點(diǎn)G,若AF=3,BF=7,直接寫出FG的長度.23.(12分)隨著通訊技術(shù)迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷某校數(shù)學(xué)興趣小組設(shè)計(jì)了“你最喜歡的溝通方式”調(diào)查問卷每人必選且只選一種,在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問題:這次統(tǒng)計(jì)共抽查了______名學(xué)生;在扇形統(tǒng)計(jì)圖中,表示“QQ”的扇形圓心角的度數(shù)為______;將條形統(tǒng)計(jì)圖補(bǔ)充完整;該校共有1500名學(xué)生,請(qǐng)估計(jì)該校最喜歡用“微信”進(jìn)行溝通的學(xué)生有多少名.24.(1)解方程:.(2)解不等式組:

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題分析:根據(jù)平均數(shù)的定義列式計(jì)算,再根據(jù)找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個(gè)數(shù)(或兩個(gè)數(shù)的平均數(shù))為中位數(shù)解答.平均數(shù)為:×(6+3+4+1+7)=1,按照從小到大的順序排列為:3,4,1,6,7,所以,中位數(shù)為:1.故選A.考點(diǎn):中位數(shù);算術(shù)平均數(shù).2、B【解析】

由條件設(shè)AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數(shù)值可以求出∠EBC的度數(shù)和∠CEP的度數(shù),則∠CEP=∠BEP,運(yùn)用勾股定理及三角函數(shù)值就可以求出就可以求出BF、EF的值,從而可以求出結(jié)論.【詳解】解:設(shè)AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點(diǎn),∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過點(diǎn)E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯(cuò)誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【點(diǎn)睛】本題考查了矩形的性質(zhì)的運(yùn)用,相似三角形的判定及性質(zhì)的運(yùn)用,特殊角的正切值的運(yùn)用,勾股定理的運(yùn)用及直角三角形的性質(zhì)的運(yùn)用,解答時(shí)根據(jù)比例關(guān)系設(shè)出未知數(shù)表示出線段的長度是關(guān)鍵.3、D【解析】試題解析:第①個(gè)圖形中有盆鮮花,第②個(gè)圖形中有盆鮮花,第③個(gè)圖形中有盆鮮花,…第n個(gè)圖形中的鮮花盆數(shù)為則第⑥個(gè)圖形中的鮮花盆數(shù)為故選C.4、A【解析】分析:詳解:∵當(dāng)a≤x≤a+2時(shí),函數(shù)有最大值1,∴1=x2-2x-2,解得:,即-1≤x≤3,∴a=-1或a+2=-1,∴a=-1或1,故選A.點(diǎn)睛:本題考查了求二次函數(shù)的最大(小)值的方法,注意:只有當(dāng)自變量x在整個(gè)取值范圍內(nèi),函數(shù)值y才在頂點(diǎn)處取最值,而當(dāng)自變量取值范圍只有一部分時(shí),必須結(jié)合二次函數(shù)的增減性及對(duì)稱軸判斷何處取最大值,何處取最小值.5、B【解析】

由OA=OB得∠OAB=∠OBA=25°,根據(jù)三角形內(nèi)角和定理計(jì)算出∠AOB=130°,則根據(jù)圓周角定理得∠P=

∠AOB,然后根據(jù)圓內(nèi)接四邊形的性質(zhì)求解.【詳解】解:在圓上取點(diǎn)

P

,連接

PA

、

PB.∵OA=OB

,∴∠OAB=∠OBA=25°

,∴∠AOB=180°?2×25°=130°

,∴∠P=∠AOB=65°,∴∠ACB=180°?∠P=115°.故選B.【點(diǎn)睛】本題考查的是圓,熟練掌握?qǐng)A周角定理是解題的關(guān)鍵.6、A【解析】試題分析:根據(jù)y隨x的增大而減小得:k<0,又kb>0,則b<0,故此函數(shù)的圖象經(jīng)過第二、三、四象限,即不經(jīng)過第一象限.故選A.考點(diǎn):一次函數(shù)圖象與系數(shù)的關(guān)系.7、C【解析】觀察可得,拋物線與x軸有兩個(gè)交點(diǎn),可得,即,選項(xiàng)A正確;拋物線開口向下且頂點(diǎn)為(4,6)可得拋物線的最大值為6,即,選項(xiàng)B正確;由題意可知拋物線的對(duì)稱軸為x=4,因?yàn)?-2=2,5-4=1,且1<2,所以可得m<n,選項(xiàng)C錯(cuò)誤;因?qū)ΨQ軸,即可得8a+b=0,選項(xiàng)D正確,故選C.點(diǎn)睛:本題主要考查了二次函數(shù)y=ax2+bx+c圖象與系數(shù)的關(guān)系,解決本題的關(guān)鍵是從圖象中獲取信息,利用數(shù)形結(jié)合思想解決問題,本題難度適中.8、C【解析】試題分析:∵四邊形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分別為∠ABC、∠BCD的平分線,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,則∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故選C.考點(diǎn):1.多邊形內(nèi)角與外角2.三角形內(nèi)角和定理.9、D【解析】

由根與系數(shù)的關(guān)系得出x1+x2=5,x1?x2=2,將其代入x1+x2?x1?x2中即可得出結(jié)論.【詳解】解:∵方程x2?5x+2=0的兩個(gè)解分別為x1,x2,∴x1+x2=5,x1?x2=2,∴x1+x2?x1?x2=5?2=1.故選D.【點(diǎn)睛】本題考查了根與系數(shù)的關(guān)系,解題的關(guān)鍵是根據(jù)根與系數(shù)的關(guān)系得出x1+x2=5,x1?x2=2.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時(shí),根據(jù)根與系數(shù)的關(guān)系得出兩根之和與兩根之積是關(guān)鍵.10、D【解析】

本題關(guān)鍵是正確分析出所剪時(shí)的虛線與正方形紙片的邊平行.【詳解】要想得到平面圖形(4),需要注意(4)中內(nèi)部的矩形與原來的正方形紙片的邊平行,故剪時(shí),虛線也與正方形紙片的邊平行,所以D是正確答案,故本題正確答案為D選項(xiàng).【點(diǎn)睛】本題考查了平面圖形在實(shí)際生活中的應(yīng)用,有良好的空間想象能力過動(dòng)手能力是解題關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、>【解析】

要比較甲、乙方差的大小,就需要求出甲、乙的方差;首先根據(jù)折線統(tǒng)計(jì)圖結(jié)合根據(jù)平均數(shù)的計(jì)算公式求出這兩組數(shù)據(jù)的平均數(shù);接下來根據(jù)方差的公式求出甲、乙兩個(gè)樣本的方差,然后比較即可解答題目.【詳解】甲組的平均數(shù)為:=4,S甲2=×[(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2]=,乙組的平均數(shù)為:=4,S乙2=×[(4-4)2+(3-4)2+(5-4)2+(3-4)2+(4-4)2+(5-4)2]=,∵>,∴S甲2>S乙2.故答案為:>.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是方差,算術(shù)平均數(shù),折線統(tǒng)計(jì)圖,解題的關(guān)鍵是熟練的掌握方差,算術(shù)平均數(shù),折線統(tǒng)計(jì)圖.12、1或【解析】

由四邊形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四邊形ABFE是平行四邊形,根據(jù)平行四邊形的性質(zhì)得到EF∥AB,于是得到EF=AB=,當(dāng)△EFG為等腰三角形時(shí),①EF=GE=時(shí),于是得到DE=DG=AD÷=1,②GE=GF時(shí),根據(jù)勾股定理得到DE=.【詳解】解:∵四邊形ABCD是菱形,∠B=120°,∴∠D=∠B=120°,∠A=180°-120°=60°,BC∥AD,∵EF∥AB,∴四邊形ABFE是平行四邊形,∴EF∥AB,∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG,∴∠DEG=∠DGE=30°,∴∠FEG=30°,當(dāng)△EFG為等腰三角形時(shí),當(dāng)EF=EG時(shí),EG=,如圖1,過點(diǎn)D作DH⊥EG于H,∴EH=EG=,在Rt△DEH中,DE==1,GE=GF時(shí),如圖2,過點(diǎn)G作GQ⊥EF,∴EQ=EF=,在Rt△EQG中,∠QEG=30°,∴EG=1,過點(diǎn)D作DP⊥EG于P,∴PE=EG=,同①的方法得,DE=,當(dāng)EF=FG時(shí),由∠EFG=180°-2×30°=120°=∠CFE,此時(shí),點(diǎn)C和點(diǎn)G重合,點(diǎn)F和點(diǎn)B重合,不符合題意,故答案為1或.【點(diǎn)睛】本題考查了菱形的性質(zhì),平行四邊形的性質(zhì),等腰三角形的性質(zhì)以及勾股定理,熟練掌握各性質(zhì)是解題的關(guān)鍵.13、-1【解析】

先把點(diǎn)(1,6)代入反比例函數(shù)y=,求出k的值,進(jìn)而可得出反比例函數(shù)的解析式,再把點(diǎn)(m,-3)代入即可得出m的值.【詳解】解:∵反比例函數(shù)y=的圖象經(jīng)過點(diǎn)(1,6),∴6=,解得k=6,∴反比例函數(shù)的解析式為y=.∵點(diǎn)(m,-3)在此函數(shù)圖象上上,∴-3=,解得m=-1.故答案為-1.【點(diǎn)睛】本題考查的是反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn),熟知反比例函數(shù)圖象上各點(diǎn)的坐標(biāo)一定適合此函數(shù)的解析式是解答此題的關(guān)鍵.14、1【解析】

如圖作點(diǎn)D關(guān)于BC的對(duì)稱點(diǎn)D′,連接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出當(dāng)E、F、P、D′共線時(shí),PF+PD′定值最小,最小值=ED′﹣EF.【詳解】如圖作點(diǎn)D關(guān)于BC的對(duì)稱點(diǎn)D′,連接PD′,ED′,在Rt△EDD′中,∵DE=6,DD′=1,∴ED′==10,∵DP=PD′,∴PD+PF=PD′+PF,∵EF=EA=2是定值,∴當(dāng)E、F、P、D′共線時(shí),PF+PD′定值最小,最小值=10﹣2=1,∴PF+PD的最小值為1,故答案為1.【點(diǎn)睛】本題考查翻折變換、矩形的性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用軸對(duì)稱,根據(jù)兩點(diǎn)之間線段最短解決最短問題.15、(-2,-2)【解析】

先根據(jù)“相”和“兵”的坐標(biāo)確定原點(diǎn)位置,然后建立坐標(biāo)系,進(jìn)而可得“卒”的坐標(biāo).【詳解】“卒”的坐標(biāo)為(﹣2,﹣2),故答案是:(﹣2,﹣2).【點(diǎn)睛】考查了坐標(biāo)確定位置,關(guān)鍵是正確確定原點(diǎn)位置.16、【解析】

用黑球的個(gè)數(shù)除以總球的個(gè)數(shù)即可得出黑球的概率.【詳解】解:∵袋子中共有5個(gè)球,有2個(gè)黑球,∴從袋子中隨機(jī)摸出一個(gè)球,它是黑球的概率為;故答案為.【點(diǎn)睛】本題考查概率的求法:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.三、解答題(共8題,共72分)17、(1)△ABC的外接圓的R為1;(2)EF的最小值為2;(3)存在,AC的最小值為9.【解析】

(1)如圖1中,作△ABC的外接圓,連接OA,OC.證明∠AOC=90°即可解決問題;(2)如圖2中,作AH⊥BC于H.當(dāng)直徑AD的值一定時(shí),EF的值也確定,根據(jù)垂線段最短可知當(dāng)AD與AH重合時(shí),AD的值最短,此時(shí)EF的值也最短;(3)如圖3中,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABE,連接EC,作EH⊥CB交CB的延長線于H,設(shè)BE=CD=x.證明EC=AC,構(gòu)建二次函數(shù)求出EC的最小值即可解決問題.【詳解】解:(1)如圖1中,作△ABC的外接圓,連接OA,OC.∵∠B=180°﹣∠BAC﹣∠ACB=180°﹣75°﹣10°=45°,又∵∠AOC=2∠B,∴∠AOC=90°,∴AC=1,∴OA=OC=1,∴△ABC的外接圓的R為1.(2)如圖2中,作AH⊥BC于H.∵AC=8,∠C=45°,∴AH=AC?sin45°=8×=8,∵∠BAC=10°,∴當(dāng)直徑AD的值一定時(shí),EF的值也確定,根據(jù)垂線段最短可知當(dāng)AD與AH重合時(shí),AD的值最短,此時(shí)EF的值也最短,如圖2﹣1中,當(dāng)AD⊥BC時(shí),作OH⊥EF于H,連接OE,OF.∵∠EOF=2∠BAC=20°,OE=OF,OH⊥EF,∴EH=HF,∠OEF=∠OFE=30°,∴EH=OF?cos30°=4?=1,∴EF=2EH=2,∴EF的最小值為2.(3)如圖3中,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABE,連接EC,作EH⊥CB交CB的延長線于H,設(shè)BE=CD=x.∵∠AE=AC,∠CAE=90°,∴EC=AC,∠AEC=∠ACE=45°,∴EC的值最小時(shí),AC的值最小,∵∠BCD=∠ACB+∠ACD=∠ACB+∠AEB=30°,∴∠∠BEC+∠BCE=10°,∴∠EBC=20°,∴∠EBH=10°,∴∠BEH=30°,∴BH=x,EH=x,∵CD+BC=2,CD=x,∴BC=2﹣x∴EC2=EH2+CH2=(x)2+=x2﹣2x+432,∵a=1>0,∴當(dāng)x=﹣=1時(shí),EC的長最小,此時(shí)EC=18,∴AC=EC=9,∴AC的最小值為9.【點(diǎn)睛】本題屬于圓綜合題,考查了圓周角定理,勾股定理,解直角三角形,二次函數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,學(xué)會(huì)構(gòu)建二次函數(shù)解決最值問題,屬于中考?jí)狠S題.18、(1)50(2)36%(3)160【解析】

(1)根據(jù)條形圖的意義,將各組人數(shù)依次相加即可得到答案;(2)根據(jù)條形圖可直接得到最喜歡籃球活動(dòng)的人數(shù),除以(1)中的調(diào)查總?cè)藬?shù)即可得出其所占的百分比;(3)用樣本估計(jì)總體,先求出九年級(jí)占全???cè)藬?shù)的百分比,然后求出全校的總?cè)藬?shù);再根據(jù)最喜歡跳繩活動(dòng)的學(xué)生所占的百分比,繼而可估計(jì)出全校學(xué)生中最喜歡跳繩活動(dòng)的人數(shù).【詳解】(1)該校對(duì)名學(xué)生進(jìn)行了抽樣調(diào)查.本次調(diào)查中,最喜歡籃球活動(dòng)的有人,,∴最喜歡籃球活動(dòng)的人數(shù)占被調(diào)查人數(shù)的.(3),人,人.答:估計(jì)全校學(xué)生中最喜歡跳繩活動(dòng)的人數(shù)約為人.【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用.讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖中各部分占總體的百分比之和為1,直接反映部分占總體的百分比大?。?9、(1)P=t+2;(2)①當(dāng)0<t≤8時(shí),w=240;當(dāng)8<t≤12時(shí),w=2t2+12t+16;當(dāng)12<t≤24時(shí),w=﹣t2+42t+88;②此范圍所對(duì)應(yīng)的月銷售量P的最小值為12噸,最大值為19噸.【解析】分析:(1)設(shè)8<t≤24時(shí),P=kt+b,將A(8,10)、B(24,26)代入求解可得P=t+2;(2)①分0<t≤8、8<t≤12和12<t≤24三種情況,根據(jù)月毛利潤=月銷量×每噸的毛利潤可得函數(shù)解析式;②求出8<t≤12和12<t≤24時(shí),月毛利潤w在滿足336≤w≤513條件下t的取值范圍,再根據(jù)一次函數(shù)的性質(zhì)可得P的最大值與最小值,二者綜合可得答案.詳解:(1)設(shè)8<t≤24時(shí),P=kt+b,將A(8,10)、B(24,26)代入,得:,解得:,∴P=t+2;(2)①當(dāng)0<t≤8時(shí),w=(2t+8)×=240;當(dāng)8<t≤12時(shí),w=(2t+8)(t+2)=2t2+12t+16;當(dāng)12<t≤24時(shí),w=(-t+44)(t+2)=-t2+42t+88;②當(dāng)8<t≤12時(shí),w=2t2+12t+16=2(t+3)2-2,∴8<t≤12時(shí),w隨t的增大而增大,當(dāng)2(t+3)2-2=336時(shí),解題t=10或t=-16(舍),當(dāng)t=12時(shí),w取得最大值,最大值為448,此時(shí)月銷量P=t+2在t=10時(shí)取得最小值12,在t=12時(shí)取得最大值14;當(dāng)12<t≤24時(shí),w=-t2+42t+88=-(t-21)2+529,當(dāng)t=12時(shí),w取得最小值448,由-(t-21)2+529=513得t=17或t=25,∴當(dāng)12<t≤17時(shí),448<w≤513,此時(shí)P=t+2的最小值為14,最大值為19;綜上,此范圍所對(duì)應(yīng)的月銷售量P的最小值為12噸,最大值為19噸.點(diǎn)睛:本題主要考查二次函數(shù)的應(yīng)用,掌握待定系數(shù)法求函數(shù)解析式及根據(jù)相等關(guān)系列出分段函數(shù)的解析式是解題的前提,利用二次函數(shù)的性質(zhì)求得336≤w≤513所對(duì)應(yīng)的t的取值范圍是解題的關(guān)鍵.20、(1);(2)1-4a≤y≤4+5a;(3)b=2或-10.【解析】

(1)將P(4,-1)代入,可求出解析式

(2)將(4,-1)代入求得:b=-4a-1,再代入對(duì)稱軸直線中,可判斷,且開口向上,所以y隨x的增大而減小,再把x=-1,x=2代入即可求得.

(3)觀察圖象可得,當(dāng)0≤x≤1時(shí),拋物線上的點(diǎn)到x軸距離的最大值為6,這些點(diǎn)可能為x=0,x=1,三種情況,再根據(jù)對(duì)稱軸在不同位置進(jìn)行討論即可.【詳解】解:(1)由此拋物線頂點(diǎn)為P(4,-1),所以y=a(x-4)2-1=ax2-8ax+16a-1,即16a-1=3,解得a=,b=-8a=-2所以拋物線解析式為:;(2)由此拋物線經(jīng)過點(diǎn)C(4,-1),所以一1=16a+4b+3,即b=-4a-1.因?yàn)閽佄锞€的開口向上,則有其對(duì)稱軸為直線,而所以當(dāng)-1≤x≤2時(shí),y隨著x的增大而減小當(dāng)x=-1時(shí),y=a+(4a+1)+3=4+5a當(dāng)x=2時(shí),y=4a-2(4a+1)+3=1-4a所以當(dāng)-1≤x≤2時(shí),1-4a≤y≤4+5a;(3)當(dāng)a=1時(shí),拋物線的解析式為y=x2+bx+3∴拋物線的對(duì)稱軸為直線由拋物線圖象可知,僅當(dāng)x=0,x=1或x=-時(shí),拋物線上的點(diǎn)可能離x軸最遠(yuǎn)分別代入可得,當(dāng)x=0時(shí),y=3當(dāng)x=1時(shí),y=b+4當(dāng)x=-時(shí),y=-+3①當(dāng)一<0,即b>0時(shí),3≤y≤b+4,由b+4=6解得b=2②當(dāng)0≤-≤1時(shí),即一2≤b≤0時(shí),△=b2-12<0,拋物線與x軸無公共點(diǎn)由b+4=6解得b=2(舍去);③當(dāng),即b<-2時(shí),b+4≤y≤3,由b+4=-6解得b=-10綜上,b=2或-10【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),待定系數(shù)法求函數(shù)解析式,以及最值問題,關(guān)鍵是對(duì)稱軸在不同的范圍內(nèi),拋物線上的點(diǎn)到x軸距離的最大值的點(diǎn)不同.21、(1)證明見解析;(2)2.【解析】

(1)作輔助線,根據(jù)等腰三角形三線合一得BD=CD,根據(jù)三角形的中位線可得OD∥AC,所以得OD⊥EF,從而得結(jié)論;(2)證明△ODF∽△AEF,列比例式可得結(jié)論.【詳解】(1)證明:連接OD,AD,∵AB是⊙O的直徑,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切線;(2)解:∵OD∥AE,∴△ODF∽△AEF,∴ODAE∵AB=4,AE=1,∴23∴BF=2.【點(diǎn)睛】本題主要考查的是圓的綜合應(yīng)用,解答本題主要應(yīng)用了圓周角定理、相似三角形的性質(zhì)和判定,圓的切線的判定,掌握本題的輔助線的作法是解題的關(guān)鍵.22、(1)①AE+BF=EC;②AF+BF=2CE;(2)AF﹣BF=2CE,證明見解析;(3)FG=.【解析】

(1)①只要證明△ACE≌△BCD(AAS),推出AE=BD,CE=CD,推出四邊形CEFD為正方形,即可解決問題;②利用①中結(jié)論即可解決問題;(2)首先證明BF-AF=2CE.由AF=3,BF=7,推出CE=EF=2,AE=AF+EF=5,由FG∥EC,可知,由此即可解決問題;【詳解】解:(1)證明:①如圖1,過點(diǎn)C做CD⊥BF,交FB的延長線于點(diǎn)D,∵CE⊥MN,CD⊥BF,∴∠CEA=∠D=90°,∵CE⊥MN,CD⊥BF,BF⊥MN,∴四邊形CEFD為矩形,∴∠ECD=90°,又∵∠ACB=90°,∴∠ACB-∠ECB=∠ECD-∠ECB,即∠ACE=∠BCD,又∵△ABC為等腰直角三角形,∴AC=BC,在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論