甘肅省甘南州卓尼縣柳林中學新高考仿真卷數(shù)學試卷及答案解析_第1頁
甘肅省甘南州卓尼縣柳林中學新高考仿真卷數(shù)學試卷及答案解析_第2頁
甘肅省甘南州卓尼縣柳林中學新高考仿真卷數(shù)學試卷及答案解析_第3頁
甘肅省甘南州卓尼縣柳林中學新高考仿真卷數(shù)學試卷及答案解析_第4頁
甘肅省甘南州卓尼縣柳林中學新高考仿真卷數(shù)學試卷及答案解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

甘肅省甘南州卓尼縣柳林中學新高考仿真卷數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為虛數(shù)單位,若復數(shù)滿足,則()A. B. C. D.2.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F且EF=,則下列結論中錯誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值3.從集合中隨機選取一個數(shù)記為,從集合中隨機選取一個數(shù)記為,則在方程表示雙曲線的條件下,方程表示焦點在軸上的雙曲線的概率為()A. B. C. D.4.已知點,若點在曲線上運動,則面積的最小值為()A.6 B.3 C. D.5.如圖所示,三國時代數(shù)學家趙爽在《周髀算經》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一內角為,若向弦圖內隨機拋擲500顆米粒(米粒大小忽略不計,?。?,則落在小正方形(陰影)內的米粒數(shù)大約為()A.134 B.67 C.182 D.1086.根據(jù)最小二乘法由一組樣本點(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個樣本點落在回歸直線上B.若所有樣本點都在回歸直線上,則變量同的相關系數(shù)為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關7.已知等比數(shù)列滿足,,則()A. B. C. D.8.設集合則()A. B. C. D.9.中國古代數(shù)學著作《孫子算經》中有這樣一道算術題:“今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問物幾何?”人們把此類題目稱為“中國剩余定理”,若正整數(shù)除以正整數(shù)后的余數(shù)為,則記為,例如.現(xiàn)將該問題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的等于().A. B. C. D.10.設函數(shù)在上可導,其導函數(shù)為,若函數(shù)在處取得極大值,則函數(shù)的圖象可能是()A. B.C. D.11.在的展開式中,含的項的系數(shù)是()A.74 B.121 C. D.12.在鈍角中,角所對的邊分別為,為鈍角,若,則的最大值為()A. B. C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系xOy中,己知直線與函數(shù)的圖象在y軸右側的公共點從左到右依次為,,…,若點的橫坐標為1,則點的橫坐標為________.14.函數(shù)在的零點個數(shù)為________.15.從集合中隨機取一個元素,記為,從集合中隨機取一個元素,記為,則的概率為_______.16.執(zhí)行以下語句后,打印紙上打印出的結果應是:_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點的橫坐標變?yōu)樵瓉淼谋?,縱坐標不變,得到曲線,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,射線與曲線交于點,將射線繞極點逆時針方向旋轉交曲線于點.(1)求曲線的參數(shù)方程;(2)求面積的最大值.18.(12分)如圖,四棱錐,側面是邊長為2的正三角形,且與底面垂直,底面是的菱形,為棱上的動點,且.(I)求證:為直角三角形;(II)試確定的值,使得二面角的平面角余弦值為.19.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)把的參數(shù)方程化為極坐標方程:(2)求與交點的極坐標.20.(12分)隨著小汽車的普及,“駕駛證”已經成為現(xiàn)代人“必考”的證件之一.若某人報名參加了駕駛證考試,要順利地拿到駕駛證,他需要通過四個科目的考試,其中科目二為場地考試.在一次報名中,每個學員有5次參加科目二考試的機會(這5次考試機會中任何一次通過考試,就算順利通過,即進入下一科目考試;若5次都沒有通過,則需重新報名),其中前2次參加科目二考試免費,若前2次都沒有通過,則以后每次參加科目二考試都需要交200元的補考費.某駕校對以往2000個學員第1次參加科目二考試進行了統(tǒng)計,得到下表:考試情況男學員女學員第1次考科目二人數(shù)1200800第1次通過科目二人數(shù)960600第1次未通過科目二人數(shù)240200若以上表得到的男、女學員第1次通過科目二考試的頻率分別作為此駕校男、女學員每次通過科目二考試的概率,且每人每次是否通過科目二考試相互獨立.現(xiàn)有一對夫妻同時在此駕校報名參加了駕駛證考試,在本次報名中,若這對夫妻參加科目二考試的原則為:通過科目二考試或者用完所有機會為止.(1)求這對夫妻在本次報名中參加科目二考試都不需要交補考費的概率;(2)若這對夫妻前2次參加科目二考試均沒有通過,記這對夫妻在本次報名中參加科目二考試產生的補考費用之和為元,求的分布列與數(shù)學期望.21.(12分)已知函數(shù),.(Ⅰ)當時,求曲線在處的切線方程;(Ⅱ)求函數(shù)在上的最小值;(Ⅲ)若函數(shù),當時,的最大值為,求證:.22.(10分)如圖,在三棱柱中,、、分別是、、的中點.(1)證明:平面;(2)若底面是正三角形,,在底面的投影為,求到平面的距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】分析:題設中復數(shù)滿足的等式可以化為,利用復數(shù)的四則運算可以求出.詳解:由題設有,故,故選A.點睛:本題考查復數(shù)的四則運算和復數(shù)概念中的共軛復數(shù),屬于基礎題.2、D【解析】

A.通過線面的垂直關系可證真假;B.根據(jù)線面平行可證真假;C.根據(jù)三棱錐的體積計算的公式可證真假;D.根據(jù)列舉特殊情況可證真假.【詳解】A.因為,所以平面,又因為平面,所以,故正確;B.因為,所以,且平面,平面,所以平面,故正確;C.因為為定值,到平面的距離為,所以為定值,故正確;D.當,,取為,如下圖所示:因為,所以異面直線所成角為,且,當,,取為,如下圖所示:因為,所以四邊形是平行四邊形,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯誤.故選:D.【點睛】本題考查立體幾何中的綜合應用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計算,難度較難.注意求解異面直線所成角時,將直線平移至同一平面內.3、A【解析】

設事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,分別計算出,再利用公式計算即可.【詳解】設事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,由題意,,,則所求的概率為.故選:A.【點睛】本題考查利用定義計算條件概率的問題,涉及到雙曲線的定義,是一道容易題.4、B【解析】

求得直線的方程,畫出曲線表示的下半圓,結合圖象可得位于,結合點到直線的距離公式和兩點的距離公式,以及三角形的面積公式,可得所求最小值.【詳解】解:曲線表示以原點為圓心,1為半徑的下半圓(包括兩個端點),如圖,直線的方程為,可得,由圓與直線的位置關系知在時,到直線距離最短,即為,則的面積的最小值為.故選:B.【點睛】本題考查三角形面積最值,解題關鍵是掌握直線與圓的位置關系,確定半圓上的點到直線距離的最小值,這由數(shù)形結合思想易得.5、B【解析】

根據(jù)幾何概型的概率公式求出對應面積之比即可得到結論.【詳解】解:設大正方形的邊長為1,則小直角三角形的邊長為,

則小正方形的邊長為,小正方形的面積,

則落在小正方形(陰影)內的米粒數(shù)大約為,

故選:B.【點睛】本題主要考查幾何概型的概率的應用,求出對應的面積之比是解決本題的關鍵.6、D【解析】

對每一個選項逐一分析判斷得解.【詳解】回歸直線必過樣本數(shù)據(jù)中心點,但樣本點可能全部不在回歸直線上﹐故A錯誤;所有樣本點都在回歸直線上,則變量間的相關系數(shù)為,故B錯誤;若所有的樣本點都在回歸直線上,則的值與相等,故C錯誤;相關系數(shù)r與符號相同,若回歸直線的斜率,則,樣本點分布應從左到右是上升的,則變量x與y正相關,故D正確.故選D.【點睛】本題主要考查線性回歸方程的性質,意在考查學生對該知識的理解掌握水平和分析推理能力.7、B【解析】由a1+a3+a5=21得a3+a5+a7=,選B.8、C【解析】

直接求交集得到答案.【詳解】集合,則.故選:.【點睛】本題考查了交集運算,屬于簡單題.9、C【解析】從21開始,輸出的數(shù)是除以3余2,除以5余3,滿足條件的是23,故選C.10、B【解析】

由題意首先確定導函數(shù)的符號,然后結合題意確定函數(shù)在區(qū)間和處函數(shù)的特征即可確定函數(shù)圖像.【詳解】函數(shù)在上可導,其導函數(shù)為,且函數(shù)在處取得極大值,當時,;當時,;當時,.時,,時,,當或時,;當時,.故選:【點睛】根據(jù)函數(shù)取得極大值,判斷導函數(shù)在極值點附近左側為正,右側為負,由正負情況討論圖像可能成立的選項,是判斷圖像問題常見方法,有一定難度.11、D【解析】

根據(jù),利用通項公式得到含的項為:,進而得到其系數(shù),【詳解】因為在,所以含的項為:,所以含的項的系數(shù)是的系數(shù)是,,故選:D【點睛】本題主要考查二項展開式及通項公式和項的系數(shù),還考查了運算求解的能力,屬于基礎題,12、B【解析】

首先由正弦定理將邊化角可得,即可得到,再求出,最后根據(jù)求出的最大值;【詳解】解:因為,所以因為所以,即,,時故選:【點睛】本題考查正弦定理的應用,余弦函數(shù)的性質的應用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

當時,得,或,依題意可得,可求得,繼而可得答案.【詳解】因為點的橫坐標為1,即當時,,所以或,又直線與函數(shù)的圖象在軸右側的公共點從左到右依次為,,所以,故,所以函數(shù)的關系式為.當時,(1),即點的橫坐標為1,為二函數(shù)的圖象的第二個公共點.故答案為:1.【點睛】本題考查三角函數(shù)關系式的恒等變換、正弦型函數(shù)的性質的應用,主要考查學生的運算能力及思維能力,屬于中檔題.14、【解析】

求出的范圍,再由函數(shù)值為零,得到的取值可得零點個數(shù).【詳解】詳解:由題可知,或解得,或故有3個零點.【點睛】本題主要考查三角函數(shù)的性質和函數(shù)的零點,屬于基礎題.15、【解析】

先求出隨機抽取a,b的所有事件數(shù),再求出滿足的事件數(shù),根據(jù)古典概型公式求出結果.【詳解】解:從集合中隨機取一個元素,記為,從集合中隨機取一個元素,記為,則的事件數(shù)為9個,即為,,,其中滿足的有,,,共有8個,故的概率為.【點睛】本題考查了古典概型的計算,解題的關鍵是準確列舉出所有事件數(shù).16、1【解析】

根據(jù)程序框圖直接計算得到答案.【詳解】程序在運行過程中各變量的取值如下所示:是否繼續(xù)循環(huán)ix循環(huán)前14第一圈是44+2第二圈是74+2+8第三圈是104+2+8+14退出循環(huán),所以打印紙上打印出的結果應是:1故答案為:1.【點睛】本題考查了程序框圖,意在考查學生的計算能力和理解能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(為參數(shù));(2).【解析】

(1)根據(jù)伸縮變換結合曲線的參數(shù)方程可得出曲線的參數(shù)方程;(2)將曲線的方程化為普通方程,然后化為極坐標方程,設點的極坐標為,點的極坐標為,將這兩點的極坐標代入橢圓的極坐標方程,得出和關于的表達式,然后利用三角恒等變換思想即可求出面積的最大值.【詳解】(1)由于曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點的橫坐標變?yōu)樵瓉淼谋?,縱坐標不變,得到曲線,則曲線的參數(shù)方程為(為參數(shù));(2)將曲線的參數(shù)方程化為普通方程得,化為極坐標方程得,即,設點的極坐標為,點的極坐標為,將這兩點的極坐標代入橢圓的極坐標方程得,,的面積為,當時,的面積取到最大值.【點睛】本題考查參數(shù)方程、極坐標方程與普通方程的互化,考查了伸縮變換,同時也考查了利用極坐標方程求解三角形面積的最值問題,要熟悉極坐標方程所適用的基本類型,考查分析問題和解決問題的能力,屬于中等題.18、(1)見解析;(II).【解析】

試題分析:(1)取中點,連結,以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能證明為直角三角形;(2)設,由,得,求出平面的法向量和平面的法向量,,根據(jù)空間向量夾角余弦公式能求出結果.試題解析:(I)取中點,連結,依題意可知均為正三角形,所以,又平面平面,所以平面,又平面,所以,因為,所以,即,從而為直角三角形.(II)法一:由(I)可知,又平面平面,平面平面,平面,所以平面.以為原點,建立空間直角坐標系如圖所示,則,由可得點的坐標所以,設平面的法向量為,則,即解得,令,得,顯然平面的一個法向量為,依題意,解得或(舍去),所以,當時,二面角的余弦值為.法二:由(I)可知平面,所以,所以為二面角的平面角,即,在中,,所以,由正弦定理可得,即解得,又,所以,所以,當時,二面角的余弦值為.19、(1)(2)與交點的極坐標為,和【解析】

(1)先把曲線化成直角坐標方程,再化簡成極坐標方程;(2)聯(lián)立曲線和曲線的方程解得即可.【詳解】(1)曲線的直角坐標方程為:,即.的參數(shù)方程化為極坐標方程為;(2)聯(lián)立可得:,與交點的極坐標為,和.【點睛】本題考查了參數(shù)方程,直角坐標方程,極坐標方程的互化,也考查了極坐標方程的聯(lián)立,屬于基礎題.20、(1);(2)見解析.【解析】

事件表示男學員在第次考科目二通過,事件表示女學員在第次考科目二通過(其中)(1)這對夫妻是否通過科目二考試相互獨立,利用獨立事件乘法公式即可求得;(2)補考費用之和為元可能取值為400,600,800,1000,1200,根據(jù)題意可求相應的概率,進而可求X的數(shù)學期望.【詳解】事件表示男學員在第次考科目二通過,事件表示女學員在第次考科目二通過(其中).(1)事件表示這對夫妻考科目二都不需要交補考費..(2)的可能取值為400,600,800,1000,1200.,,,,.則的分布列為:40060080010001200故(元).【點睛】本題以實際問題為素材,考查離散型隨機變量的概率及期望,解題時要注意獨立事件概率公式的靈活運用,屬于基礎題.21、(Ⅰ)(Ⅱ)見解析;(Ⅲ)見解析.【解析】試題分析:(Ⅰ)由題,所以故,,代入點斜式可得曲線在處的切線方程;(Ⅱ)由題(1)當時,在上單調遞增.則函數(shù)在上的最小值是(2)當時,令,即,令,即(i)當,即時,在上單調遞增,所以在上的最小值是(ii)當,即時,由的單調性可得在上的最

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論