




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省綿陽巿三臺中學新高考沖刺模擬數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點,點在曲線上運動,點為拋物線的焦點,則的最小值為()A. B. C. D.42.的展開式中含的項的系數為()A. B.60 C.70 D.803.函數在的圖象大致為()A. B.C. D.4.如圖所示,已知某幾何體的三視圖及其尺寸(單位:),則該幾何體的表面積為()A. B.C. D.5.已知定義在上的偶函數,當時,,設,則()A. B. C. D.6.在中,分別為所對的邊,若函數有極值點,則的范圍是()A. B.C. D.7.若,則下列不等式不能成立的是()A. B. C. D.8.已知復數,若,則的值為()A.1 B. C. D.9.已知函數,若函數的所有零點依次記為,且,則()A. B. C. D.10.已知函數,若所有點,所構成的平面區(qū)域面積為,則()A. B. C.1 D.11.已知為銳角,且,則等于()A. B. C. D.12.將函數f(x)=sin3x-cos3x+1的圖象向左平移個單位長度,得到函數g(x)的圖象,給出下列關于g(x)的結論:①它的圖象關于直線x=對稱;②它的最小正周期為;③它的圖象關于點(,1)對稱;④它在[]上單調遞增.其中所有正確結論的編號是()A.①② B.②③ C.①②④ D.②③④二、填空題:本題共4小題,每小題5分,共20分。13.若奇函數滿足,為R上的單調函數,對任意實數都有,當時,,則________.14.已知向量,且,則___________.15.邊長為2的正方形經裁剪后留下如圖所示的實線圍成的部分,將所留部分折成一個正四棱錐.當該棱錐的體積取得最大值時,其底面棱長為________.16.已知實數x,y滿足(2x-y)2+4y三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(Ⅰ)當時,求不等式的解集;(Ⅱ)若存在滿足不等式,求實數的取值范圍.18.(12分)已知直線的參數方程為(為參數),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程及曲線的直角坐標方程;(2)設點,直線與曲線交于兩點,求的值.19.(12分)已知拋物線的焦點為,點在拋物線上,,直線過點,且與拋物線交于,兩點.(1)求拋物線的方程及點的坐標;(2)求的最大值.20.(12分)已知數列滿足對任意都有,其前項和為,且是與的等比中項,.(1)求數列的通項公式;(2)已知數列滿足,,設數列的前項和為,求大于的最小的正整數的值.21.(12分)設函數f(x)=sin(2x-π(I)求f(x)的最小正周期;(II)若α∈(π6,π)且f(22.(10分)在中,角的對邊分別為.已知,.(1)若,求;(2)求的面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
如圖所示:過點作垂直準線于,交軸于,則,設,,則,利用均值不等式得到答案.【詳解】如圖所示:過點作垂直準線于,交軸于,則,設,,則,當,即時等號成立.故選:.【點睛】本題考查了拋物線中距離的最值問題,意在考查學生的計算能力和轉化能力.2、B【解析】
展開式中含的項是由的展開式中含和的項分別與前面的常數項和項相乘得到,由二項式的通項,可得解【詳解】由題意,展開式中含的項是由的展開式中含和的項分別與前面的常數項和項相乘得到,所以的展開式中含的項的系數為.故選:B【點睛】本題考查了二項式系數的求解,考查了學生綜合分析,數學運算的能力,屬于基礎題.3、B【解析】
先考慮奇偶性,再考慮特殊值,用排除法即可得到正確答案.【詳解】是奇函數,排除C,D;,排除A.故選:B.【點睛】本題考查函數圖象的判斷,屬于??碱}.4、C【解析】
由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,據此可計算出答案.【詳解】由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,該幾何體的表面積.故選:C【點睛】本題主要考查了三視圖的知識,幾何體的表面積的計算.由三視圖正確恢復幾何體是解題的關鍵.5、B【解析】
根據偶函數性質,可判斷關系;由時,,求得導函數,并構造函數,由進而判斷函數在時的單調性,即可比較大小.【詳解】為定義在上的偶函數,所以所以;當時,,則,令則,當時,,則在時單調遞增,因為,所以,即,則在時單調遞增,而,所以,綜上可知,即,故選:B.【點睛】本題考查了偶函數的性質應用,由導函數性質判斷函數單調性的應用,根據單調性比較大小,屬于中檔題.6、D【解析】試題分析:由已知可得有兩個不等實根.考點:1、余弦定理;2、函數的極值.【方法點晴】本題考查余弦定理,函數的極值,涉及函數與方程思想思想、數形結合思想和轉化化歸思想,考查邏輯思維能力、等價轉化能力、運算求解能力,綜合性較強,屬于較難題型.首先利用轉化化歸思想將原命題轉化為有兩個不等實根,從而可得.7、B【解析】
根據不等式的性質對選項逐一判斷即可.【詳解】選項A:由于,即,,所以,所以,所以成立;選項B:由于,即,所以,所以,所以不成立;選項C:由于,所以,所以,所以成立;選項D:由于,所以,所以,所以,所以成立.故選:B.【點睛】本題考查不等關系和不等式,屬于基礎題.8、D【解析】由復數模的定義可得:,求解關于實數的方程可得:.本題選擇D選項.9、C【解析】
令,求出在的對稱軸,由三角函數的對稱性可得,將式子相加并整理即可求得的值.【詳解】令,得,即對稱軸為.函數周期,令,可得.則函數在上有8條對稱軸.根據正弦函數的性質可知,將以上各式相加得:故選:C.【點睛】本題考查了三角函數的對稱性,考查了三角函數的周期性,考查了等差數列求和.本題的難點是將所求的式子拆分為的形式.10、D【解析】
依題意,可得,在上單調遞增,于是可得在上的值域為,繼而可得,解之即可.【詳解】解:,因為,,所以,在上單調遞增,則在上的值域為,因為所有點所構成的平面區(qū)域面積為,所以,解得,故選:D.【點睛】本題考查利用導數研究函數的單調性,理解題意,得到是關鍵,考查運算能力,屬于中檔題.11、C【解析】
由可得,再利用計算即可.【詳解】因為,,所以,所以.故選:C.【點睛】本題考查二倍角公式的應用,考查學生對三角函數式化簡求值公式的靈活運用的能力,屬于基礎題.12、B【解析】
根據函數圖象的平移變換公式求出函數的解析式,再利用正弦函數的對稱性、單調區(qū)間等相關性質求解即可.【詳解】因為f(x)=sin3x-cos3x+1=2sin(3x-)+1,由圖象的平移變換公式知,函數g(x)=2sin[3(x+)-]+1=2sin(3x+)+1,其最小正周期為,故②正確;令3x+=kπ+,得x=+(k∈Z),所以x=不是對稱軸,故①錯誤;令3x+=kπ,得x=-(k∈Z),取k=2,得x=,故函數g(x)的圖象關于點(,1)對稱,故③正確;令2kπ-≤3x+≤2kπ+,k∈Z,得-≤x≤+,取k=2,得≤x≤,取k=3,得≤x≤,故④錯誤;故選:B【點睛】本題考查圖象的平移變換和正弦函數的對稱性、單調性和最小正周期等性質;考查運算求解能力和整體代換思想;熟練掌握正弦函數的對稱性、單調性和最小正周期等相關性質是求解本題的關鍵;屬于中檔題、??碱}型二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據可得,函數是以為周期的函數,令,可求,從而可得,代入解析式即可求解.【詳解】令,則,由,則,所以,解得,所以,由時,,所以時,;由,所以,所以函數是以為周期的函數,,又函數為奇函數,所以.故答案為:【點睛】本題主要考查了換元法求函數解析式、函數的奇偶性、周期性的應用,屬于中檔題.14、【解析】
由向量平行的坐標表示得出,求解即可得出答案.【詳解】因為,所以,解得.故答案為:【點睛】本題主要考查了由向量共線或平行求參數,屬于基礎題.15、【解析】
根據題意,建立棱錐體積的函數,利用導數求函數的最大值即可.【詳解】設底面邊長為,則斜高為,即此四棱錐的高為,所以此四棱錐體積為,令,令,易知函數在時取得最大值.故此時底面棱長.故答案為:.【點睛】本題考查棱錐體積的求解,涉及利用導數研究體積最大值的問題,屬綜合中檔題.16、2【解析】
直接利用柯西不等式得到答案.【詳解】根據柯西不等式:2x-y2+4y當2x-y=2y,即x=328故答案為:2.【點睛】本題考查了柯西不等式求最值,也可以利用均值不等式,三角換元求得答案.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)或.(Ⅱ)【解析】
(Ⅰ)分類討論解絕對值不等式得到答案.(Ⅱ)討論和兩種情況,得到函數單調性,得到只需,代入計算得到答案.【詳解】(Ⅰ)當時,不等式為,變形為或或,解集為或.(Ⅱ)當時,,由此可知在單調遞減,在單調遞增,當時,同樣得到在單調遞減,在單調遞增,所以,存在滿足不等式,只需,即,解得.【點睛】本題考查了解絕對值不等式,不等式存在性問題,意在考查學生的計算能力和綜合應用能力.18、(1);(2)【解析】
(1)直接利用轉換關系的應用,把參數方程極坐標方程和直角坐標方程之間進行轉換.(2)利用(1)的結論,進一步利用一元二次方程根和系數的關系式的應用求出結果.【詳解】解:(1)直線的參數方程為(為參數),轉換為直角坐標方程為.曲線的極坐標方程為.轉換為,轉換為直角坐標方程為.(2)直線的參數方程為(為參數),轉換為標準式為(為參數),代入圓的直角坐標方程整理得,所以,..【點睛】本題屬于基礎本題考查的知識要點:主要考查極坐標,參數方程與普通方程互化,及求三角形面積.需要熟記極坐標系與參數方程的公式,及與解析幾何相關的直線與曲線位置關系的一些解題思路.19、(1),;(2)1.【解析】
(1)根據拋物線上的點到焦點和準線的距離相等,可得p值,即可求拋物線C的方程從而可得解;(2)設直線l的方程為:x+my﹣1=0,代入y2=4x,得,y2+4my﹣4=0,設A(x1,y1),B(x2,y2),則y1+y2=﹣4m,y1y2=﹣4,x1+x2=2+4m2,x1x2=1,(),(x2﹣2,),由此能求出的最大值.【詳解】(1)∵點F是拋物線y2=2px(p>0)的焦點,P(2,y0)是拋物線上一點,|PF|=3,∴23,解得:p=2,∴拋物線C的方程為y2=4x,∵點P(2,n)(n>0)在拋物線C上,∴n2=4×2=8,由n>0,得n=2,∴P(2,2).(2)∵F(1,0),∴設直線l的方程為:x+my﹣1=0,代入y2=4x,整理得,y2+4my﹣4=0設A(x1,y1),B(x2,y2),則y1,y2是y2+4my﹣4=0的兩個不同實根,∴y1+y2=﹣4m,y1y2=﹣4,x1+x2=(1﹣my1)+(1﹣my2)=2﹣m(y1+y2)=2+4m2,x1x2=(1﹣my1)(1﹣my2)=1﹣m(y1+y2)+m2y1y2=1+4m2﹣4m2=1,(),(x2﹣2,),(x1﹣2)(x2﹣2)+()()=x1x2﹣2(x1+x2)+4=1﹣4﹣8m2+4﹣4+8m+8=﹣8m2+8m+5=﹣8(m)2+1.∴當m時,取最大值1.【點睛】本題考查拋物線方程的求法,考查向量的數量積的最大值的求法,考查拋物線、直線方程、韋達定理等基礎知識,考查運算求解能力,考查函數與方程思想,是中檔題.20、(1)(2)4【解析】
(1)利用判斷是等差數列,利用求出,利用等比中項建立方程,求出公差可得.(2)利用的通項公式,求出,用錯位相減法求出,最后建立不等式求出最小的正整數.【詳解】解:任意都有,數列是等差數列,,又是與的等比中項,,設數列的公差為,且,則,解得,,;由題意可知,①,②,①﹣②得:,,,由得,,,,滿足條件的最小的正整數的值為.【點睛】本題考查等差數列的通項公式和前項和公式及錯位相減法求和.(1)解決等差數列通項的思路(1)在等差數列中,是最基本的兩個量,一般可設出和,利用等差數列的通項公式和前項和公式列方程(組)求解即可.(2)錯位相減法求和的方法:如果數列是等差數列,是等比數列,求數列的前項和時,可采用錯位相減法,一般是和式兩邊同乘以等比數列的公比,然后作差求解;在寫“”與“”的表達式時應特別注意將兩式“錯項對齊”以便下一步準確寫出“”的表達式21、(I)π;(II)-【解析】
(I)化簡得到fx(II)f(α2)=2sin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第6課班級生活有規(guī)則第一課時教學設計-2023-2024學年道德與法治二年級上冊統(tǒng)編版
- (2024年秋季版)七年級道德與法治上冊 第二單元 學會交往 2.2 文明交往 第2框 化解“愛的沖突”教學設計(掃描版) 粵教版
- 小自考視覺傳播設計復習知識試題及答案
- 二級建造師考試成功案例解析試題及答案
- 清華保送面試試題及答案
- 視覺傳播設計考試復習資料與答案
- 2024秋六年級語文上冊 第六單元 第19課 青山不老教學設計 新人教版
- 數學試卷八上試題及答案
- 6探訪古代文明(第1課時)(教學設計)2023-2024學年統(tǒng)編版道德與法治六年級下冊
- 2024-2025學年高中歷史 第三單元 近代中國經濟結構的變動與資本主義的曲折發(fā)展 第9課 近代中國經濟結構的變動(4)教學教學設計 新人教版必修2
- 異常子宮出血健康宣教
- 腦出血鉆孔引流手術后護理
- 物業(yè)工程部作業(yè)指導書樣本
- 氫能產業(yè)園規(guī)劃設計方案
- 居民自建樁安裝告知書回執(zhí)
- 國開2023秋《人文英語4》第5-8單元作文練習參考答案
- 攔沙壩施工工藝
- 肺癌腫瘤標志物檢測與臨床應用
- Unit+4+Amazing+Art+Developing+ideas+-高中英語外研版(2019)必修第三冊
- 物業(yè)公司章程模板
- 基于主成分-聚類分析的各地區(qū)火災事故研究(附有SAS程序)
評論
0/150
提交評論