版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
萊蕪市重點中學高三5月熱身考試新高考數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線的漸近線與圓相切,則雙曲線的離心率為()A.2 B. C. D.2.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長為1),則這個幾何體的體積是()A. B. C.16 D.323.設,則A. B. C. D.4.已知向量,,則向量與的夾角為()A. B. C. D.5.設函數(shù),當時,,則()A. B. C.1 D.6.網(wǎng)格紙上小正方形邊長為1單位長度,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()A.1 B. C.3 D.47.a為正實數(shù),i為虛數(shù)單位,,則a=()A.2 B. C. D.18.在原點附近的部分圖象大概是()A. B.C. D.9.閱讀如圖的程序框圖,若輸出的值為25,那么在程序框圖中的判斷框內可填寫的條件是()A. B. C. D.10.本次模擬考試結束后,班級要排一張語文、數(shù)學、英語、物理、化學、生物六科試卷講評順序表,若化學排在生物前面,數(shù)學與物理不相鄰且都不排在最后,則不同的排表方法共有()A.72種 B.144種 C.288種 D.360種11.已知點是拋物線的對稱軸與準線的交點,點為拋物線的焦點,點在拋物線上且滿足,若取得最大值時,點恰好在以為焦點的橢圓上,則橢圓的離心率為()A. B. C. D.12.在中,角,,的對邊分別為,,,若,,,則()A. B.3 C. D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù)滿足,則的最小值是______________.14.已知角的終邊過點,則______.15.如圖,在平面四邊形ABCD中,|AC|=3,|BD|=4,則(AB16.已知隨機變量,且,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某動漫影視制作公司長期堅持文化自信,不斷挖掘中華優(yōu)秀傳統(tǒng)文化中的動漫題材,創(chuàng)作出一批又一批的優(yōu)秀動漫影視作品,獲得市場和廣大觀眾的一致好評,同時也為公司贏得豐厚的利潤.該公司年至年的年利潤關于年份代號的統(tǒng)計數(shù)據(jù)如下表(已知該公司的年利潤與年份代號線性相關).年份年份代號年利潤(單位:億元)(Ⅰ)求關于的線性回歸方程,并預測該公司年(年份代號記為)的年利潤;(Ⅱ)當統(tǒng)計表中某年年利潤的實際值大于由(Ⅰ)中線性回歸方程計算出該年利潤的估計值時,稱該年為級利潤年,否則稱為級利潤年.將(Ⅰ)中預測的該公司年的年利潤視作該年利潤的實際值,現(xiàn)從年至年這年中隨機抽取年,求恰有年為級利潤年的概率.參考公式:,.18.(12分)選修4-5:不等式選講已知函數(shù)f(x)=log2(|x+1|+|x﹣2|﹣m).(1)當m=7時,求函數(shù)f(x)的定義域;(2)若關于x的不等式f(x)≥2的解集是R,求m的取值范圍.19.(12分)《山東省高考改革試點方案》規(guī)定:從2017年秋季高中入學的新生開始,不分文理科;2020年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學等六門選考科目構成.將每門選考科目的考生原始成績從高到低劃分為、、、、、、、共8個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為、、、、、、、.選考科目成績計入考生總成績時,將至等級內的考生原始成績,依照等比例轉換法則,分別轉換到、、、、、、、八個分數(shù)區(qū)間,得到考生的等級成績.某校高一年級共2000人,為給高一學生合理選科提供依據(jù),對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布.(1)求物理原始成績在區(qū)間的人數(shù);(2)按高考改革方案,若從全省考生中隨機抽取3人,記表示這3人中等級成績在區(qū)間的人數(shù),求的分布列和數(shù)學期望.(附:若隨機變量,則,,)20.(12分)已知函數(shù).(1)若是函數(shù)的極值點,求的單調區(qū)間;(2)當時,證明:21.(12分)某市調硏機構對該市工薪階層對“樓市限購令”態(tài)度進行調查,抽調了50名市民,他們月收入頻數(shù)分布表和對“樓市限購令”贊成人數(shù)如下表:月收入(單位:百元)頻數(shù)51055頻率0.10.20.10.1贊成人數(shù)4812521(1)若所抽調的50名市民中,收入在的有15名,求,,的值,并完成頻率分布直方圖.(2)若從收入(單位:百元)在的被調查者中隨機選取2人進行追蹤調查,選中的2人中恰有人贊成“樓市限購令”,求的分布列與數(shù)學期望.(3)從月收入頻率分布表的6組市民中分別隨機抽取3名市民,恰有一組的3名市民都不贊成“樓市限購令”,根據(jù)表格數(shù)據(jù),判斷這3名市民來自哪組的可能性最大?請直接寫出你的判斷結果.22.(10分)的內角的對邊分別為,已知.(1)求的大??;(2)若,求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
利用圓心到漸近線的距離等于半徑即可建立間的關系.【詳解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離等于1,即,所以,.故選:C.【點睛】本題考查雙曲線離心率的求法,求雙曲線離心率問題,關鍵是建立三者間的方程或不等關系,本題是一道基礎題.2、A【解析】幾何體為一個三棱錐,高為4,底面為一個等腰直角三角形,直角邊長為4,所以體積是,選A.3、C【解析】分析:利用復數(shù)的除法運算法則:分子、分母同乘以分母的共軛復數(shù),化簡復數(shù),然后求解復數(shù)的模.詳解:,則,故選c.點睛:復數(shù)是高考中的必考知識,主要考查復數(shù)的概念及復數(shù)的運算.要注意對實部、虛部的理解,掌握純虛數(shù)、共軛復數(shù)這些重要概念,復數(shù)的運算主要考查除法運算,通過分母實數(shù)化轉化為復數(shù)的乘法,運算時特別要注意多項式相乘后的化簡,防止簡單問題出錯,造成不必要的失分.4、C【解析】
求出,進而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點睛】本題考查了向量的坐標運算,考查了數(shù)量積的坐標表示.求向量夾角時,通常代入公式進行計算.5、A【解析】
由降冪公式,兩角和的正弦公式化函數(shù)為一個角的一個三角函數(shù)形式,然后由正弦函數(shù)性質求得參數(shù)值.【詳解】,時,,,∴,由題意,∴.故選:A.【點睛】本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數(shù)性質,掌握正弦函數(shù)性質是解題關鍵.6、A【解析】
采用數(shù)形結合,根據(jù)三視圖可知該幾何體為三棱錐,然后根據(jù)錐體體積公式,可得結果.【詳解】根據(jù)三視圖可知:該幾何體為三棱錐如圖該幾何體為三棱錐,長度如上圖所以所以所以故選:A【點睛】本題考查根據(jù)三視圖求直觀圖的體積,熟悉常見圖形的三視圖:比如圓柱,圓錐,球,三棱錐等;對本題可以利用長方體,根據(jù)三視圖刪掉沒有的點與線,屬中檔題.7、B【解析】
,選B.8、A【解析】
分析函數(shù)的奇偶性,以及該函數(shù)在區(qū)間上的函數(shù)值符號,結合排除法可得出正確選項.【詳解】令,可得,即函數(shù)的定義域為,定義域關于原點對稱,,則函數(shù)為奇函數(shù),排除C、D選項;當時,,,則,排除B選項.故選:A.【點睛】本題考查利用函數(shù)解析式選擇函數(shù)圖象,一般要分析函數(shù)的定義域、奇偶性、單調性、零點以及函數(shù)值符號,考查分析問題和解決問題的能力,屬于中等題.9、C【解析】
根據(jù)循環(huán)結構的程序框圖,帶入依次計算可得輸出為25時的值,進而得判斷框內容.【詳解】根據(jù)循環(huán)程序框圖可知,則,,,,,此時輸出,因而不符合條件框的內容,但符合條件框內容,結合選項可知C為正確選項,故選:C.【點睛】本題考查了循環(huán)結構程序框圖的簡單應用,完善程序框圖,屬于基礎題.10、B【解析】
利用分步計數(shù)原理結合排列求解即可【詳解】第一步排語文,英語,化學,生物4種,且化學排在生物前面,有種排法;第二步將數(shù)學和物理插入前4科除最后位置外的4個空擋中的2個,有種排法,所以不同的排表方法共有種.選.【點睛】本題考查排列的應用,不相鄰采用插空法求解,準確分步是關鍵,是基礎題11、B【解析】
設,利用兩點間的距離公式求出的表達式,結合基本不等式的性質求出的最大值時的點坐標,結合橢圓的定義以及橢圓的離心率公式求解即可.【詳解】設,因為是拋物線的對稱軸與準線的交點,點為拋物線的焦點,所以,則,當時,,當時,,當且僅當時取等號,此時,,點在以為焦點的橢圓上,,由橢圓的定義得,所以橢圓的離心率,故選B.【點睛】本題主要考查橢圓的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個重點也是難點,一般求離心率有以下幾種情況:①直接求出,從而求出;②構造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解.12、B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得?!?選B。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先畫出不等式組對應的可行域,再利用數(shù)形結合分析解答得解.【詳解】畫出不等式組表示的可行域如圖陰影區(qū)域所示.由題得y=-3x+z,它表示斜率為-3,縱截距為z的直線系,平移直線,易知當直線經(jīng)過點時,直線的縱截距最小,目標函數(shù)取得最小值,且.故答案為:-8【點睛】本題主要考查線性規(guī)劃問題,意在考查學生對這些知識的理解掌握水平和數(shù)形結合分析能力.14、【解析】
由題意利用任意角的三角函數(shù)的定義,兩角和差正弦公式,求得的值.【詳解】解:∵角的終邊過點,∴,,∴,故答案為:.【點睛】本題主要考查任意角的三角函數(shù)的定義,兩角和差正弦公式,屬于基礎題.15、-7【解析】
由題意得AB+【詳解】由題意得ABBC+∴AB+【點睛】突破本題的關鍵是抓住題中所給圖形的特點,利用平面向量基本定理和向量的加減運算,將所給向量統(tǒng)一用AC,16、0.1【解析】
根據(jù)原則,可得,簡單計算,可得結果.【詳解】由題可知:隨機變量,則期望為所以故答案為:【點睛】本題考查正態(tài)分布的計算,掌握正態(tài)曲線的圖形以及計算,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ),該公司年年利潤的預測值為億元;(Ⅱ).【解析】
(Ⅰ)求出和的值,將表格中的數(shù)據(jù)代入最小二乘法公式,求得和的值,進而可求得關于的線性回歸方程,然后將代入回歸直線方程,可得出該公司年年利潤的估計值;(Ⅱ)利用(Ⅰ)中的回歸直線方程計算出從年至年這年被評為級利潤年的年數(shù),然后利用組合計數(shù)原理結合古典概型的概率可得出所求事件的概率.【詳解】(Ⅰ)根據(jù)表中數(shù)據(jù),計算可得,,,又,,,關于的線性回歸方程為.將代入回歸方程得(億元),該公司年的年利潤的預測值為億元.(Ⅱ)由(Ⅰ)可知年至年的年利潤的估計值分別為、、、、、、、(單位:億元),其中實際利潤大于相應估計值的有年.故這年中被評為級利潤年的有年,評為級利潤年的有年.記“從年至年這年的年利潤中隨機抽取年,恰有年為級利潤年”的概率為,.【點睛】本題考查利用最小二乘法求回歸直線方程,同時也考查了古典概型概率的計算,涉及組合計數(shù)原理的應用,考查計算能力,屬于中等題.18、(1),(2)【解析】試題分析:用零點分區(qū)間討論法解含絕對值的不等式,根據(jù)絕對值三角不等式得出,不等式|x+1|+|x﹣2|≥m+4解集是R,只需m+4≤3,得出的范圍.試題解析:(1)由題設知:|x+1|+|x﹣2|>7,不等式的解集是以下不等式組解集的并集:,或,或,解得函數(shù)f(x)的定義域為(﹣∞,﹣3)∪(4,+∞).(2)不等式f(x)≥2即|x+1|+|x﹣2|≥m+4,∵x∈R時,恒有|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,不等式|x+1|+|x﹣2|≥m+4解集是R,∴m+4≤3,m的取值范圍是(﹣∞,﹣1].19、(Ⅰ)1636人;(Ⅱ)見解析.【解析】
(Ⅰ)根據(jù)正態(tài)曲線的對稱性,可將區(qū)間分為和兩種情況,然后根據(jù)特殊區(qū)間上的概率求出成績在區(qū)間內的概率,進而可求出相應的人數(shù);(Ⅱ)由題意得成績在區(qū)間[61,80]的概率為,且,由此可得的分布列和數(shù)學期望.【詳解】(Ⅰ)因為物理原始成績,所以.所以物理原始成績在(47,86)的人數(shù)為(人).(Ⅱ)由題意得,隨機抽取1人,其成績在區(qū)間[61,80]內的概率為.所以隨機抽取三人,則的所有可能取值為0,1,2,3,且,所以,,,.所以的分布列為0123所以數(shù)學期望.【點睛】(1)解答第一問的關鍵是利用正態(tài)分布的三個特殊區(qū)間表示所求概率的區(qū)間,再根據(jù)特殊區(qū)間上的概率求解,解題時注意結合正態(tài)曲線的對稱性.(2)解答第二問的關鍵是判斷出隨機變量服從二項分布,然后可得分布列及其數(shù)學期望.當被抽取的總體的容量較大時,抽樣可認為是等可能的,進而可得隨機變量服從二項分布.20、(1)遞減區(qū)間為(-1,0),遞增區(qū)間為(2)見解析【解析】
(1)根據(jù)函數(shù)解析式,先求得導函數(shù),由是函數(shù)的極值點可求得參數(shù).求得函數(shù)定義域,并根據(jù)導函數(shù)的符號即可判斷單調區(qū)間.(2)當時,.代入函數(shù)解析式放縮為,代入證明的不等式可化為,構造函數(shù),并求得,由函數(shù)單調性及零點存在定理可知存在唯一的,使得成立,因而求得函數(shù)的最小值,由對數(shù)式變形化簡可證明,即成立,原不等式得證.【詳解】(1)函數(shù)可求得,則解得所以,定義域為,在單調遞增,而,∴當時,,單調遞減,當時,,單調遞增,此時是函數(shù)的極小值點,的遞減區(qū)間為,遞增區(qū)間為(2)證明:當時,,因此要證當時,,只需證明,即令,則,在是單調遞增,而,∴存在唯一的,使得,當,單調遞減,當,單調遞增,因此當時,函數(shù)取得最小值,,,故,從而,即,結論成立.【點睛】本題考查了由函數(shù)極值求參數(shù),并根據(jù)導數(shù)判斷函數(shù)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 七年級英語Travel課件
- 《實驗室空調系統(tǒng)》課件
- 《檔案價值鑒定》課件
- 單位管理制度集合大全人事管理篇十篇
- 單位管理制度集粹選集人力資源管理篇十篇
- 單位管理制度匯編大全人事管理篇
- 單位管理制度合并匯編【人員管理篇】
- 單位管理制度分享合集員工管理篇
- 單位管理制度范文大合集職工管理十篇
- 單位管理制度呈現(xiàn)匯編職員管理十篇
- 2023-2024學年浙江省杭州市上城區(qū)教科版四年級上冊期末考試科學試卷
- 期末 (試題) -2024-2025學年人教PEP版英語五年級上冊
- 期末 (試題) -2024-2025學年外研版(三起)(2024)英語三年級上冊
- 使用單位特種設備安全風險管控清單
- 新學位法專題講座課件
- 《中國古代文學史——李白》優(yōu)秀PPT課件
- 履帶吊驗收表
- AAEM的應用機理
- 2018-2019學年第一學期西城小學三年級數(shù)學期末試題
- GB-T-12137-2015-氣瓶氣密性試驗方法
- 學生學習挑戰(zhàn)書
評論
0/150
提交評論