版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省溫州市普通高中2025屆數(shù)學(xué)高一下期末經(jīng)典模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列結(jié)論正確的是()A.空間中不同三點確定一個平面B.空間中兩兩相交的三條直線確定一個平面C.一條直線和一個點能確定一個平面D.梯形一定是平面圖形2.一個三棱錐的三視圖如圖所示,則該棱錐的全面積為()A. B. C. D.3.已知圓內(nèi)接四邊形ABCD各邊的長度分別為AB=5,BC=8,CD=3,DA=5,則AC的長為()A.6 B.7 C.8 D.94.如果數(shù)列的前項和為,那么數(shù)列的通項公式是()A. B.C. D.5.某班有男生30人,女生20人,按分層抽樣方法從班級中選出5人負責(zé)校園開放日的接待工作.現(xiàn)從這5人中隨機選取2人,至少有1名男生的概率是()A. B. C. D.6.在△ABC中,角A,B,C所對的邊分別為a,b,c,若a﹣b=ccosB﹣ccosA,則△ABC的形狀為()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰三角形或直角三角形7.函數(shù)是().A.周期為的偶函數(shù) B.周期為的奇函數(shù)C.周期為的偶函數(shù) D.周期為奇函數(shù)8.△中,已知,,,如果△有兩組解,則的取值范圍()A. B. C. D.9.已知點A(﹣1,0),B(1,0),C(0,1),直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,則b的取值范圍是()A.(0,1) B. C. D.10.下圖是500名學(xué)生某次數(shù)學(xué)測試成績(單位:分)的頻率分布直方圖,則這500名學(xué)生中測試成績在區(qū)間[90,100)中的學(xué)生人數(shù)是A.60 B.55 C.45 D.50二、填空題:本大題共6小題,每小題5分,共30分。11.中,若,,,則的面積______.12.設(shè)直線與圓C:x2+y2-2ay-2=0相交于A,B兩點,若,則圓C的面積為________13.已知函數(shù)在一個周期內(nèi)的圖象如圖所示,則的解析式是______.14.若,則________.15.若直線與圓相切,則________.16.若實數(shù)滿足,則取值范圍是____________。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求的最小正周期.(2)求在區(qū)間上的最小值.18.數(shù)列的前項和.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.19.一扇形的周長為20,當扇形的圓心角等于多少時,這個扇形的面積最大?最大面積是多少?20.如圖,在中,,四邊形是邊長為的正方形,平面平面,若,分別是的中點.(1)求證:平面;(2)求證:平面平面;(3)求幾何體的體積.21.甲、乙二人參加某體育項目訓(xùn)練,近期的五次測試成績得分情況如圖所示.(1)分別求出兩人得分的平均數(shù)與方差;(2)根據(jù)圖和上面算得的結(jié)果,對兩人的訓(xùn)練成績作出評價.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】空間中不共線三點確定一個平面,空間中兩兩相交的三條直線確定一個或三個平面,一條直線和一個直線外一點能確定一個平面,梯形有兩對邊相互平行,所以梯形一定是平面圖形,因此選D.2、A【解析】
數(shù)形結(jié)合,還原出該幾何體的直觀圖,計算出各面的面積,可得結(jié)果.【詳解】如圖為等腰直角三角形,平面根據(jù)三視圖,可知點到的距離為點到的距離為所以,故該棱錐的全面積為故選:A【點睛】本題考查三視圖還原,并求表面積,難點在于還原幾何體,對于一些常見的幾何體要熟悉其三視圖,對解題有很大幫助,屬中檔題.3、B【解析】
分別在△ABC和△ACD中用余弦定理解出AC,列方程解出cosD,得出AC.【詳解】在△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB×BCcosB=89﹣80cosB,在△ACD中,由余弦定理得AC2=CD2+AD2﹣2AD×CDcosD=34﹣30cosD,∴89﹣80cosB=34﹣30cosD,∵A+C=180°,∴cosB=﹣cosD,∴cosD,∴AC2=34﹣30×()=1.∴AC=2.故選B.【點睛】本題考查了余弦定理的應(yīng)用,三角形的解法,考查了圓內(nèi)接四邊形的性質(zhì)的應(yīng)用,屬于中檔題.4、D【解析】
利用計算即可.【詳解】當時,當時,即,故數(shù)列為等比數(shù)列則因為,所以故選:D【點睛】本題主要考查了已知來求,關(guān)鍵是利用來求解,屬于基礎(chǔ)題.5、D【解析】
由題意,男生30人,女生20人,按照分層抽樣方法從中抽取5人,則男生為人,女生為,從這5人中隨機選取2人,共有種,全是女生的只有1種,所以至少有1名女生的概率為,故選D.6、D【解析】
用正弦定理化邊為角,再由誘導(dǎo)公式和兩角和的正弦公式化簡變形可得.【詳解】∵a﹣b=ccosB﹣ccosA,∴,∴,∴,∴或,∴或,故選:D.【點睛】本題考查正弦定理,考查三角形形狀的判斷.解題關(guān)鍵是誘導(dǎo)公式的應(yīng)用.7、B【解析】因,故是奇函數(shù),且最小正周期是,即,應(yīng)選答案B.點睛:解答本題時充分運用題設(shè)條件,先借助二倍角的余弦公式的變形,將函數(shù)的形式進行化簡,然后再驗證函數(shù)的奇偶性與周期性,從而獲得問題的答案.8、D【解析】由正弦定理得A+C=180°-60°=120°,
由題意得:A有兩個值,且這兩個值之和為180°,
∴利用正弦函數(shù)的圖象可得:60°<A<120°,
若A=90,這樣補角也是90°,一解,不合題意,<sinA<1,
∵x=sinA,則2<x<故選D9、B【解析】
先求得直線y=ax+b(a>0)與x軸的交點為M(,0),由0可得點M在射線OA上.求出直線和BC的交點N的坐標,①若點M和點A重合,求得b;②若點M在點O和點A之間,求得b;③若點M在點A的左側(cè),求得b>1.再把以上得到的三個b的范圍取并集,可得結(jié)果.【詳解】由題意可得,三角形ABC的面積為1,由于直線y=ax+b(a>0)與x軸的交點為M(,0),由直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,可得b>0,故0,故點M在射線OA上.設(shè)直線y=ax+b和BC的交點為N,則由可得點N的坐標為(,).①若點M和點A重合,如圖:則點N為線段BC的中點,故N(,),把A、N兩點的坐標代入直線y=ax+b,求得a=b.②若點M在點O和點A之間,如圖:此時b,點N在點B和點C之間,由題意可得三角形NMB的面積等于,即,即,可得a0,求得b,故有b.③若點M在點A的左側(cè),則b,由點M的橫坐標1,求得b>a.設(shè)直線y=ax+b和AC的交點為P,則由求得點P的坐標為(,),此時,由題意可得,三角形CPN的面積等于,即?(1﹣b)?|xN﹣xP|,即(1﹣b)?||,化簡可得2(1﹣b)2=|a2﹣1|.由于此時b>a>0,0<a<1,∴2(1﹣b)2=|a2﹣1|=1﹣a2.兩邊開方可得(1﹣b)1,∴1﹣b,化簡可得b>1,故有1b.綜上可得b的取值范圍應(yīng)是,故選B.【點睛】本題主要考查確定直線的要素,點到直線的距離公式以及三角形的面積公式的應(yīng)用,還考查了運算能力以及綜合分析能力,分類討論思想,屬于難題.10、D【解析】分析:根據(jù)頻率分布直方圖可得測試成績落在中的頻率,從而可得結(jié)果.詳解:由頻率分布直方圖可得測試成績落在中的頻率為,所以測試成績落在中的人數(shù)為,,故選D.點睛:本題主要考查頻率分布直方圖的應(yīng)用,屬于中檔題.直觀圖的主要性質(zhì)有:(1)直方圖中各矩形的面積之和為;(2)組距與直方圖縱坐標的乘積為該組數(shù)據(jù)的頻率.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用三角形的面積公式可求出的面積的值.【詳解】由三角形的面積公式可得.故答案為:.【點睛】本題考查三角形面積的計算,熟練利用三角形的面積公式是計算的關(guān)鍵,考查計算能力,屬于基礎(chǔ)題.12、【解析】因為圓心坐標與半徑分別為,所以圓心到直線的距離,則,解之得,所以圓的面積,應(yīng)填答案.13、【解析】
由圖象得出,得出該函數(shù)圖象的最小正周期,可得出,再將點的坐標代入函數(shù)的解析式,結(jié)合該函數(shù)在附近的單調(diào)性求得的表達式,即可得出函數(shù)的解析式.【詳解】由圖象可得,函數(shù)的最小正周期為,,則,由于函數(shù)的圖象過點,且在附近單調(diào)遞增,所以,,,因此,.故答案為:.【點睛】本題考查利用三角函數(shù)的圖象求解析式,一般要結(jié)合圖象依次求出、、的值,在利用對稱中心求時,要結(jié)合函數(shù)在對稱中心附近的單調(diào)性來求解,考查計算能力,屬于中等題.14、【解析】
觀察式子特征,直接寫出,即可求出。【詳解】觀察的式子特征,明確各項關(guān)系,以及首末兩項,即可寫出,所以,相比,增加了后兩項,少了第一項,故。【點睛】本題主要考查學(xué)生的數(shù)學(xué)抽象能力,正確弄清式子特征是解題關(guān)鍵。15、1【解析】
利用圓心到直線的距離等于半徑列方程,解方程求得的值.【詳解】由于直線和圓相切,所以圓心到直線的距離,即,由于,所以.故答案為:【點睛】本小題主要考查直線和圓的位置關(guān)系,考查點到直線的距離公式,屬于基礎(chǔ)題.16、;【解析】
利用三角換元,設(shè),;利用輔助角公式將化為,根據(jù)三角函數(shù)值域求得結(jié)果.【詳解】可設(shè),,本題正確結(jié)果:【點睛】本題考查利用三角換元法求解取值范圍的問題,關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化為三角函數(shù)值域的求解問題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】試題分析:本題主要考查倍角公式、兩角和的正弦公式、三角函數(shù)的周期、三角函數(shù)的最值等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計算能力.(Ⅰ)先利用倍角公式將降冪,再利用兩角和的正弦公式將化簡,使之化簡成的形式,最后利用計算函數(shù)的最小正周期;(Ⅱ)將的取值范圍代入,先求出的范圍,再數(shù)形結(jié)合得到三角函數(shù)的最小值.試題解析:(Ⅰ)∵,∴的最小正周期為.(Ⅱ)∵,∴.當,即時,取得最小值.∴在區(qū)間上的最小值為.考點:倍角公式、兩角和的正弦公式、三角函數(shù)的周期、三角函數(shù)的最值.18、(1)(2)【解析】
(1)當時,,利用得到通項公式,驗證得到答案.(2)根據(jù)的正負將和分為兩種情況,和,分別計算得到答案.【詳解】(1)當時,,當時,.綜上所述.(2)當時,,所以,當時,,.綜上所述.【點睛】本題考查了利用求通項公式,數(shù)列的絕對值和,忽略時的情況是容易犯的錯誤.19、;;【解析】
設(shè)扇形的半徑為,弧長為,利用周長關(guān)系,表示出扇形的面積,利用二次函數(shù)求出面積的最大值,以及圓心角的大小.【詳解】設(shè)扇形的半徑為,弧長為,則,即,扇形的面積,將上式代入得,所以當且僅當時,有最大值,此時,可得,所以當時,扇形的面積取最大值,最大值為【點睛】本題考查了扇形的弧長公式、面積公式以及二次函數(shù)的性質(zhì),需熟記扇形的弧長、面積公式,屬于基礎(chǔ)題.20、(1)詳見解析(2)詳見解析(2)【解析】
試題分析:(1)如圖,連接EA交BD于F,利用正方形的性質(zhì)、三角形的中位線定理、線面平行的判定定理即可證明.(2)利用已知可得:FG⊥平面EBC,可得∠FBG就是線BD與平面EBC所成的角.經(jīng)過計算即可得出.(3)利用體積公式即可得出.試題解析:(1)如圖,連接,易知為的中點.因為,分別是和的中點,所以,因為平面,平面,所以平面.(2)證明:因為四邊形為正方形,所以.又因為平面平面,所以平面.所以.又因為,所以.所以平面.從而平面平面.(3)取AB中點N,連接,因為,所以,且.又平面平面,所以平面.因為是四棱錐,所以.即幾何體的體積.點睛:本題考查了正方形的性質(zhì)、線面,面面平行垂直的判定與性質(zhì)定理、三棱錐的體積計算公式、線面角的求法,考查了推理能力與計算能力,屬于中檔題.21、(1)答案見解析;(2)答案見解析.【解析】試題分析:(1)由圖象可得甲、乙兩人五次測試的成績分別為,甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.根據(jù)平均數(shù),方差的公式代入計算得解(2)由可知乙的成績較穩(wěn)定.從折線圖看,甲的成績基本呈上升狀態(tài),而乙的成績上下波動,可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 航空部件維修合同模板
- 甜品店勞動合同
- 梯阻系統(tǒng)安裝合同
- 《食管癌的治療》課件
- 《大學(xué)英語UNI》課件
- 2025年丹東a2貨運從業(yè)資格證模擬考試
- 軍訓(xùn)個人心得體會匯編15篇
- 2025年石家莊貨運從業(yè)資格證模擬考試題及答案解析
- 智能家居項目延期還款協(xié)議
- 風(fēng)電設(shè)備運輸司機聘用合同模板
- 《工業(yè)機器人系統(tǒng)集成》課標
- 2024年高爾夫球車項目可行性研究報告
- 民事陪審員培訓(xùn)課件
- 湖南財政經(jīng)濟學(xué)院《世界市場行情》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年執(zhí)業(yè)醫(yī)師考試-中醫(yī)師承及確有專長考核考試近5年真題集錦(頻考類試題)帶答案
- 醫(yī)學(xué)細胞生物學(xué)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 駐店藥師考試題及答案
- 醫(yī)藥公司中藥采購年終工作總結(jié)(8篇)
- 境外投資設(shè)備合同模板
- 滬科版數(shù)學(xué)八年級上冊期末考試試卷含答案
- 江蘇省昆山市、太倉、常熟、張家港市2023-2024學(xué)年八年級上學(xué)期期末陽光測評語文試卷
評論
0/150
提交評論