版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
內蒙古土默特左旗金山學校2025屆高一下數(shù)學期末預測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,點是邊上的靠近的三等分點,則()A. B.C. D.2.若各項為正數(shù)的等差數(shù)列的前n項和為,且,則()A.9 B.14 C.7 D.183.下列四個函數(shù)中,既是上的增函數(shù),又是以為周期的偶函數(shù)的是()A. B. C. D.4.設等比數(shù)列的前項和為,且,則()A.255 B.375 C.250 D.2005.已知,則的值構成的集合為()A. B. C. D.6.如圖,是的直觀圖,其中軸,軸,那么是()A.等腰三角形 B.鈍角三角形 C.等腰直角三角形 D.直角三角形7.在中,,,其面積為,則等于()A. B. C. D.8.化簡sin2013o的結果是A.sin33o B.cos33o C.-sin33o D.-cos33o9.設是兩條不同的直線,是兩個不同的平面,則下列命題不正確的是()A.若,則 B.若,則C.若,則 D.若,則10.已知向量,且,則m=()A.?8 B.?6C.6 D.8二、填空題:本大題共6小題,每小題5分,共30分。11.若直線與圓相交于,兩點,且(其中為原點),則的值為________.12.在中,角的對邊分別為,若面積,則角__________.13.已知,且,則_____.14.若,,,則M與N的大小關系為___________.15.某銀行一年期定期儲蓄年利率為2.25%,如果存款到期不取出繼續(xù)留存于銀行,銀行自動將本金及80%的利息(利息須交納20%利息稅,由銀行代交)自動轉存一年期定期儲蓄,某人以一年期定期儲蓄存入銀行20萬元,則5年后,這筆錢款交納利息稅后的本利和為________元.(精確到1元)16.把一枚質地均勻的硬幣先后拋擲兩次,兩次都是正面向上的概率為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知直線經過點,且與軸正半軸交于點,與軸正半軸交于點,為坐標原點.(1)若點到直線的距離為4,求直線的方程;(2)求面積的最小值.18.已知的外接圓的半徑為,內角,,的對邊分別為,,,又向量,,且.(1)求角;(2)求三角形的面積的最大值并求此時的周長.19.已知數(shù)列滿足=(1)若求數(shù)列的通項公式;(2)若==對一切恒成立求實數(shù)取值范圍.20.在相同條件下對自行車運動員甲?乙兩人進行了6次測試,測得他們的最大速度(單位:)的數(shù)據如下:甲273830373531乙332938342836試判斷選誰參加某項重大比賽更合適.21.已知,是平面內兩個不共線的非零向量,,,且,,三點共線.(1)求實數(shù)的值;(2)若,,求的坐標;(3)已知,在(2)的條件下,若,,,四點按逆時針順序構成平行四邊形,求點的坐標.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
將題中所體現(xiàn)的圖形畫出,可以很直觀的判斷向量的關系.【詳解】如圖有向量運算可以知道:,選擇A【點睛】考查平面向量基本定理,利用好兩向量加法的計算原則:首尾相連,首尾相接.2、B【解析】
根據等差中項定義及條件式,先求得.再由等差數(shù)列的求和公式,即可求得的值.【詳解】數(shù)列為各項是正數(shù)的等差數(shù)列則由等差中項可知所以原式可化為,所以由等差數(shù)列求和公式可得故選:B【點睛】本題考查了等差中項的性質,等差數(shù)列前n項和的性質及應用,屬于基礎題.3、C【解析】
本題首先可確定四個選項中的函數(shù)的周期性以及在區(qū)間上的單調性、奇偶性,然后根據題意即可得出結果.【詳解】A項:函數(shù)周期為,在上是增函數(shù),奇函數(shù);B項:函數(shù)周期為,在上是減函數(shù),偶函數(shù);C項:函數(shù)周期為,在上是增函數(shù),偶函數(shù);D項:函數(shù)周期為,在上是減函數(shù),偶函數(shù);綜上所述,故選C.【點睛】本題考查三角函數(shù)的周期性以及單調性,能否熟練的掌握正弦函數(shù)以及余弦函數(shù)的圖像性質是解決本題的關鍵,考查推理能力,是簡單題.4、A【解析】
由等比數(shù)列的性質,仍是等比數(shù)列,先由是等比數(shù)列求出,再由是等比數(shù)列,可得.【詳解】由題得,成等比數(shù)列,則有,,解得,同理有,,解得.故選:A【點睛】本題考查等比數(shù)列前n項和的性質,這道題也可以先由求出數(shù)列的首項和公比q,再由前n項和公式直接得。5、B【解析】
根據的奇偶分類討論.【詳解】為偶數(shù)時,,為奇數(shù)時,設,則.∴的值構成的集合是.故選:B.【點睛】本題考查誘導公式,掌握誘導公式是解題基礎.注意誘導公式的十字口訣:奇變偶不變,符號看象限.6、D【解析】
利用斜二測畫法中平行于坐標軸的直線,平行關系不變這個原則得出的形狀.【詳解】在斜二測畫法中,平行于坐標軸的直線,平行關系不變,則在原圖形中,軸,軸,所以,,因此,是直角三角形,故選D.【點睛】本題考查斜二測直觀圖還原,解題時要注意直觀圖的還原原則,并注意各線段長度的變化,考查分析能力,屬于基礎題.7、A【解析】
先由三角形面積公式求出,再由余弦定理得到,再由正弦定理,即可得出結果.【詳解】因為在中,,,其面積為,所以,因此,所以,所以,由正弦定理可得:,所以.故選A【點睛】本題主要考查解三角形,熟記正弦定理和余弦定理即可,屬于基礎題型.8、C【解析】試題分析:sin2013o=.考點:誘導公式.點評:直接考查誘導公式,我們要熟記公式.屬于基礎題型.9、D【解析】
對于A,利用線面平行的判定可得A正確.對于B,利用線面垂直的性質可得B正確.對于C,利用面面垂直的判定可得C正確.根據平面與平面的位置關系即可判斷D不正確.【詳解】對于A,根據平面外的一條直線與平面內的一條直線平行,則這條直線平行于這個平面,可判定A正確.對于B,根據垂直于同一個平面的兩條直線平行,判定B正確.對于C,根據一個平面過另一個平面的垂線,則這兩個平面垂直,可判定C正確.對于D,若,則或相交,所以D不正確.故選:D【點睛】本題主要考查了線面平行和面面垂直的判定,同時考查了線面垂直的性質,屬于中檔題.10、D【解析】
由已知向量的坐標求出的坐標,再由向量垂直的坐標運算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點睛】本題考查平面向量的坐標運算,考查向量垂直的坐標運算,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
首先根據題意畫出圖形,再根據求出直線的傾斜角,求斜率即可.【詳解】如圖所示直線與圓恒過定點,不妨設,因為,所以,兩種情況討論,可得,.所以斜率.故答案為:【點睛】本題主要考查直線與圓的位置關系,同時考查了數(shù)形結合的思想,屬于簡單題.12、【解析】
根據面積公式計算出的值,然后利用反三角函數(shù)求解出的值.【詳解】因為,所以,則,則有:.【點睛】本題考查三角形的面積公式以及余弦定理的應用,難度較易.利用面積公式的時候要選擇合適的公式進行化簡,可根據所求角進行選擇.13、【解析】
首先根據已知條件求得的值,平方后利用同角三角函數(shù)的基本關系式求得的值.【詳解】由得,兩邊平方并化簡得,由于,所以.而,由于,所以【點睛】本小題主要考查同角三角函數(shù)的基本關系式,考查兩角和的正弦公式,考查化歸與轉化的數(shù)學思想方法,屬于基礎題.14、【解析】
根據自變量的取值范圍,利用作差法即可比較大小.【詳解】,,,所以當時,所以,即,故答案為:.【點睛】本題考查了作差法比較整式的大小,屬于基礎題.15、218660【解析】
20萬存款滿一年到期后利息有200000×2.25%×(1-20%),本息和共200000×2.25%×(【詳解】20萬存款滿一年到期后利息有200000×2.25%×(1-20%),本息和共200000×2.25%×(200000×(1.018)故填218660.【點睛】本題主要考查了銀行存款的復利問題,由固定公式可用,本息和=本金×(1+利率×(1-16、【解析】
把一枚質地均勻的硬幣先后拋擲兩次,利用列舉法求出基本事件有4個,由此能求出兩次都是正面向上的概率.【詳解】把一枚質地均勻的硬幣先后拋擲兩次,基本事件有4個,分別為:正正,正反,反正,反反,兩次都是正面向上的概率為.故答案為:.【點睛】本題考查古典概型的概率計算,求解時注意列舉法的應用,即列舉出所有等可能結果.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)直線過定點P,故設直線l的方程為,再由點到直線的距離公式,即可解得k,得出直線方程;(2)設直線方程,,表示出A,B點的坐標,三角形面積為,根據k的取值范圍即可取出面積最小值.【詳解】解:(1)由題意可設直線的方程為,即,則,解得.故直線的方程為,即.(2)因為直線的方程為,所以,,則的面積為.由題意可知,則(當且僅當時,等號成立).故面積的最小值為.【點睛】本題考查求直線方程和用基本不等式求三角形面積的最小值.18、(1).(2),周長為.【解析】
(1)由,利用坐標表示化簡,結合余弦定理求角C(2)利用(1)中,應用正弦定理和基本不等式,即可求出面積的最大值,此時三角形為正三角即可求周長.【詳解】(1)∵,∴,且,由正弦定理得:,化簡得:.由余弦定理:,∴,∵,∴.(2)∵,∴(當且僅當時取“”),所以,,此時,為正三角形,此時三角形的周長為.【點睛】本題主要考查了利用數(shù)量積判斷兩個平面向量的垂直關系,正弦定理,余弦定理,基本不等式,屬于中檔題.19、(1)=;(2).【解析】
(1)由,結合可得數(shù)列為等差數(shù)列,進而可得所求;(2)由得,利用累加法并結合等比數(shù)列的前項和公式求出,化簡得,再利用數(shù)列的單調性求出的最大值即可得出結論.【詳解】(1)由,可得=.∴數(shù)列是首項為1,公差為4的等差數(shù)列,∴.(2)由及,得=,∴,∴,又滿足上式,∴.∵對一切恒成立,即對一切恒成立,∴對一切恒成立.又數(shù)列為單調遞減數(shù)列,∴,∴,∴實數(shù)取值范圍為.【點睛】本題主要考查等差數(shù)列與等比數(shù)列的通項公式與前項和公式,考查了累加法與恒成立問題、邏輯推理能力與計算能力,解決數(shù)列中的恒成立問題時,也常利用分離參數(shù)的方法,轉化為求最值的問題求解.20、乙,理由見解析.【解析】
分別求解兩人的測試數(shù)據的平均數(shù)和方差,然后進行判定.【詳解】甲的平均數(shù)為:,方差為:;乙的平均數(shù)為:,方差為:;因為,,所以選擇乙參加比賽較為合適.【點睛】本題主要考查統(tǒng)計量的求解及決策問題,平均數(shù)表示平均水平的高低,方差表示穩(wěn)定性,側重考查數(shù)據分析的核心素養(yǎng).21、(1);(2);(3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年離婚后共同債務清償及賠償協(xié)議
- 陜西電子信息職業(yè)技術學院《微電影創(chuàng)作》2023-2024學年第一學期期末試卷
- 2024年標準化員工福利用品采購合同模板一
- 2024年版工程延期監(jiān)理責任擴展合同版B版
- 2024年度數(shù)據安全風險評估與應急預案合同3篇
- 2024年度采購流程標準化與協(xié)議執(zhí)行細則版B版
- 山西運城農業(yè)職業(yè)技術學院《銀發(fā)產業(yè)營銷學》2023-2024學年第一學期期末試卷
- 2024委印方合同模板:多功能海報印刷服務協(xié)議3篇
- 2024年離婚合同書:專業(yè)律師審核版版B版
- 2024年電子支付系統(tǒng)合作協(xié)議
- 酒廠融資方案
- 污水處理運營維護方案
- 遼寧省大連市2023-2024學年高三上學期雙基測試(期末考試) 英語 含答案
- 基礎生物化學復習知識要點
- 注冊稅務師考試涉稅服務實務真題匯編3
- 軍事理論(2024年版)學習通超星期末考試答案章節(jié)答案2024年
- 市智慧人社項目建設方案
- XX公司并購重組流程及實施方案
- 中國近現(xiàn)代史綱要(2023-2024-1)學習通超星期末考試答案章節(jié)答案2024年
- 人教版(2024)英語七年級上冊 Unit 7 Happy Birthday!第二課時 Section A (2a-2e)教案(表格式)
- 職業(yè)衛(wèi)生及防護智慧樹知到答案2024年中南大學
評論
0/150
提交評論