2025屆安徽省合肥八中數(shù)學(xué)高一下期末綜合測試模擬試題含解析_第1頁
2025屆安徽省合肥八中數(shù)學(xué)高一下期末綜合測試模擬試題含解析_第2頁
2025屆安徽省合肥八中數(shù)學(xué)高一下期末綜合測試模擬試題含解析_第3頁
2025屆安徽省合肥八中數(shù)學(xué)高一下期末綜合測試模擬試題含解析_第4頁
2025屆安徽省合肥八中數(shù)學(xué)高一下期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆安徽省合肥八中數(shù)學(xué)高一下期末綜合測試模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在中,若,且,則的形狀為()A.直角三角形 B.等腰直角三角形C.正三角形或直角三角形 D.正三角形2.若直線x+(1+m)y-2=0與直線mx+2y+4=0平行,則m的值是()A.1 B.-2 C.1或-2 D.3.在中,設(shè)角,,的對邊分別是,,,且,則一定是()A.等邊三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形4.已知,,若對任意的,恒成立,則角的取值范圍是A.B.C.D.5.若數(shù)列的前項(xiàng)和為,則下列命題:(1)若數(shù)列是遞增數(shù)列,則數(shù)列也是遞增數(shù)列;(2)數(shù)列是遞增數(shù)列的充要條件是數(shù)列的各項(xiàng)均為正數(shù);(3)若是等差數(shù)列,則的充要條件是;(4)若是等比數(shù)列且,則的充要條件是;其中,正確命題的個(gè)數(shù)是()A.0個(gè) B.1個(gè) C.2個(gè) D.3個(gè)6.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則的值為()A. B. C. D.7.已知a,b,c,d∈R,則下列不等式中恒成立的是()A.若a>b,c>d,則ac>bd B.若a>b,則C.若a>b>0,則(a﹣b)c>0 D.若a>b,則a﹣c>b﹣c8.已知為角終邊上一點(diǎn),且,則()A. B. C. D.9.已知函數(shù),將的圖象上的所有點(diǎn)的橫坐標(biāo)縮短到原來的,縱坐標(biāo)保持不變;再把所得圖象向上平移個(gè)單位長度,得到函數(shù)的圖象,若,則的值可能為()A. B. C. D.10.點(diǎn)(4,0)關(guān)于直線5x+4y+21=0的對稱點(diǎn)是().A.(-6,8) B.(-8,-6) C.(6,8) D.(-6,-8)二、填空題:本大題共6小題,每小題5分,共30分。11.方程的解=__________.12.圓上的點(diǎn)到直線4x+3y-12=0的距離的最小值是13.設(shè),且,則的取值范圍是______.14.某校老年、中年和青年教師的人數(shù)分別為90,180,160,采用分層抽樣的方法調(diào)查教師的身體狀況,在抽取的樣本中,青年教師有32人,則抽取的樣本中老年教師的人數(shù)為_____15.設(shè)公差不為零的等差數(shù)列的前項(xiàng)和為,若,則__________.16.函數(shù)的最小正周期為______________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知邊長為2的等邊,是邊的中點(diǎn),以為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)得對應(yīng),與所在直線交于.(1)任意旋轉(zhuǎn)角,判斷是否是定值.若是,求此定值;若不是,說明理由.(2)求的最小值.18.已知,,(1)求的解析式,并求出的最大值;(2)若,求的最小值和最大值,并指出取得最值時(shí)的值.19.在平面直角坐標(biāo)系中,已知曲線的方程是(,).(1)當(dāng),時(shí),求曲線圍成的區(qū)域的面積;(2)若直線:與曲線交于軸上方的兩點(diǎn),,且,求點(diǎn)到直線距離的最小值.20.設(shè)數(shù)列的前項(xiàng)和.已知.(1)求數(shù)列的通項(xiàng)公式;(2)是否對一切正整數(shù),有?說明理由.21.設(shè)角,,其中:(1)若,求角的值;(2)求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

由兩角和的正切公式求得,從而得,由二倍角公式求得,再求得,注意檢驗(yàn)符合題意,可判斷三角形形狀.【詳解】,∴,∴,由,即.∴或.當(dāng)時(shí),,無意義.當(dāng)時(shí),,此時(shí)為正三角形.故選:D.【點(diǎn)睛】本題考查三角形形狀的判斷,考查兩角和的正切公式和二倍角公式,根據(jù)三角公式求出角是解題的基本方法.2、A【解析】

分類討論直線的斜率情況,然后根據(jù)兩直線平行的充要條件求解即可得到所求.【詳解】①當(dāng)時(shí),兩直線分別為和,此時(shí)兩直線相交,不合題意.②當(dāng)時(shí),兩直線的斜率都存在,由直線平行可得,解得.綜上可得.故選A.【點(diǎn)睛】本題考查兩直線平行的等價(jià)條件,解題的關(guān)鍵是將問題轉(zhuǎn)化為對直線斜率存在性的討論.也可利用以下結(jié)論求解:若,則且或且.3、C【解析】

利用二倍角公式化簡已知表達(dá)式,利用余弦定理化角為邊的關(guān)系,即可推出三角形的形狀.【詳解】解:因?yàn)?,所以,即,由余弦定理可知:,所以.所以三角形是直角三角形.故選:.【點(diǎn)睛】本題考查三角形的形狀的判斷,余弦定理的應(yīng)用,考查計(jì)算能力,屬于中檔題.4、B【解析】

由向量的數(shù)量積得,對任任意的,恒成立,轉(zhuǎn)化成關(guān)于的一次函數(shù),保證在和的函數(shù)值同時(shí)小于0即可.【詳解】,因?yàn)閷θ我獾暮愠闪?,則,,解得:,故選B.【點(diǎn)睛】本題考查向量數(shù)量積的坐標(biāo)運(yùn)算、三角恒等變換及不等式恒成立問題,求解的關(guān)鍵是變換主元的思想,即把不等式看成是關(guān)于變量的一次函數(shù),問題則變得簡單.5、B【解析】

對各選項(xiàng)逐個(gè)論證或給出反例后可得正確的命題的個(gè)數(shù).【詳解】對于(1),取,則,因該數(shù)列的公差為,故是遞增數(shù)列.,故,所以數(shù)列不是遞增數(shù)列,故(1)錯(cuò).對于(2),取,則,數(shù)列是遞增數(shù)列,但,故數(shù)列是遞增數(shù)列推不出的各項(xiàng)均為正數(shù),故(2)錯(cuò).對于(3),取,則,,故當(dāng)時(shí),但總成立,故總成立,故推不出,故(3)錯(cuò).對于(4),設(shè)公比為,若,若,則,,矛盾,故.又,故必存在,使得即,即,所以,故,所以是的必要條件.若,則,所以,所以,所以是的充分條件故的充要條件是,故(4)正確.故選:B.【點(diǎn)睛】本題考查數(shù)列的單調(diào)性、數(shù)列的前項(xiàng)和的單調(diào)性以及等比數(shù)列前項(xiàng)和的積的性質(zhì),對于等差數(shù)列的單調(diào)性,我們可以求出前項(xiàng)和關(guān)于的二次函數(shù)的形式,再由二次函數(shù)的性質(zhì)討論其單調(diào)性,也可以根據(jù)項(xiàng)的符號來判斷前項(xiàng)和的單調(diào)性.應(yīng)用等比數(shù)列的求和公式時(shí),注意對公比是否為1分類討論.6、D【解析】

利用等差數(shù)列的前項(xiàng)和的性質(zhì)可求的值.【詳解】因?yàn)?,所以,故,故選D.【點(diǎn)睛】一般地,如果為等差數(shù)列,為其前項(xiàng)和,則有性質(zhì):(1)若,則;(2)且;(3)且為等差數(shù)列;(4)為等差數(shù)列.7、D【解析】

根據(jù)不等式的性質(zhì)判斷.【詳解】當(dāng)時(shí),A不成立;當(dāng)時(shí),B不成立;當(dāng)時(shí),C不成立;由不等式的性質(zhì)知D成立.故選D.【點(diǎn)睛】本題考查不等式的性質(zhì),不等式的性質(zhì)中,不等式兩邊乘以同一個(gè)正數(shù),不等式號方向不變,兩邊乘以同一個(gè)負(fù)數(shù),不等式號方向改變,這個(gè)性質(zhì)容易出現(xiàn)錯(cuò)誤:一是不區(qū)分所乘數(shù)的正負(fù),二是不區(qū)分是否為1.8、B【解析】

由可得,借助三角函數(shù)定義可得m值與.【詳解】∵∴,解得又為角終邊上一點(diǎn),∴,∴∴故選B【點(diǎn)睛】本題主要考查任意角的三角函數(shù)的定義,兩角和正切公式,屬于基礎(chǔ)題.9、C【解析】

利用二倍角公式與輔助角公式將函數(shù)的解析式化簡,然后利用圖象變換規(guī)律得出函數(shù)的解析式為,可得函數(shù)的值域?yàn)?,結(jié)合條件,可得出、均為函數(shù)的最大值,于是得出為函數(shù)最小正周期的整數(shù)倍,由此可得出正確選項(xiàng).【詳解】函數(shù),將函數(shù)的圖象上的所有點(diǎn)的橫坐標(biāo)縮短到原來的倍,得的圖象;再把所得圖象向上平移個(gè)單位,得函數(shù)的圖象,易知函數(shù)的值域?yàn)?若,則且,均為函數(shù)的最大值,由,解得;其中、是三角函數(shù)最高點(diǎn)的橫坐標(biāo),的值為函數(shù)的最小正周期的整數(shù)倍,且.故選C.【點(diǎn)睛】本題考查三角函數(shù)圖象變換,同時(shí)也考查了正弦型函數(shù)與周期相關(guān)的問題,解題的關(guān)鍵在于確定、均為函數(shù)的最大值,考查分析問題和解決問題的能力,屬于中等題.10、D【解析】試題分析:設(shè)點(diǎn)(4,0)關(guān)于直線5x+4y+21=0的對稱點(diǎn)是,則點(diǎn)在直線5x+4y+21=0上,將選項(xiàng)代入就可排除A,B,C,答案為D考點(diǎn):點(diǎn)關(guān)于直線對稱,排除法的應(yīng)用二、填空題:本大題共6小題,每小題5分,共30分。11、-1【解析】分析:由對數(shù)方程,轉(zhuǎn)化為指數(shù)方程,解方程即可.詳解:由log2(1﹣2x)=﹣1可得(1﹣2x)=,解方程可求可得,x=﹣1故答案為:﹣1點(diǎn)睛:本題主要考查了對數(shù)方程的求解,解題中要善于利用對數(shù)與指數(shù)的轉(zhuǎn)化,屬于基礎(chǔ)題.12、【解析】

計(jì)算出圓心到直線的距離,減去半徑,求得圓上的點(diǎn)到直線的最小距離.【詳解】圓的圓心為,半徑.圓心到直線的距離為,故最小距離為.【點(diǎn)睛】本小題主要考查圓上的點(diǎn)到直線距離最小值的求法,考查點(diǎn)到直線距離公式,屬于基礎(chǔ)題.13、【解析】

通過可求得x的取值范圍,接著利用反正弦函數(shù)的定義可得的取值范圍.【詳解】,,即.由反正弦函數(shù)的定義可得,即的取值范圍為.故答案為:.【點(diǎn)睛】本題主要考查余弦函數(shù)的定義域和值域,反正弦函數(shù)的定義,屬于基礎(chǔ)題.14、【解析】

根據(jù)分層抽樣的定義建立比例關(guān)系,即可得到答案?!驹斀狻吭O(shè)抽取的樣本中老年教師的人數(shù)為,學(xué)校所有的中老年教師人數(shù)為270人由分層抽樣的定義可知:,解得:故答案為【點(diǎn)睛】本題考查分層抽樣,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題。15、【解析】

設(shè)出數(shù)列的首項(xiàng)和公差,根據(jù)等差數(shù)列通項(xiàng)公式和前項(xiàng)和公式,代入條件化簡得和的關(guān)系,再代入所求的式子進(jìn)行化簡求值.【詳解】解:設(shè)等差數(shù)列的首項(xiàng)為,公差為,由,得,得,.故答案為:【點(diǎn)睛】本題考查了等差數(shù)列通項(xiàng)公式和前n項(xiàng)和公式的簡單應(yīng)用,屬于基礎(chǔ).16、【解析】

利用函數(shù)y=Atan(ωx+φ)的周期為,得出結(jié)論.【詳解】函數(shù)y=3tan(3x)的最小正周期是,故答案為:.【點(diǎn)睛】本題主要考查函數(shù)y=Atan(ωx+φ)的周期性,利用了函數(shù)y=Atan(ωx+φ)的周期為.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)是,0;(2).【解析】

(1)以為坐標(biāo)原點(diǎn),所在直線為軸,所在直線為軸建立平面直角坐標(biāo)系,得出的坐標(biāo),計(jì)算得出,進(jìn)而得出;(2)根據(jù)得出點(diǎn)的軌跡是以為直徑的圓,由圓的對稱性得出的最小值.【詳解】(1)以為坐標(biāo)原點(diǎn),所在直線為軸,所在直線為軸建立平面直角坐標(biāo)系則,即∴設(shè),則所以為定值,定值為(2)由(1)知,故在以為直徑的圓上設(shè)的中點(diǎn),則,以為直徑的圓的半徑由圓的對稱性可知,的最小值是.【點(diǎn)睛】本題主要考查了計(jì)算向量的數(shù)量積以及圓對稱性的應(yīng)用,屬于中檔題.18、(1),最大值為.(2)時(shí),最小值0.時(shí),最大值.【解析】

(1)利用數(shù)量積公式、倍角公式和輔助角公式,化簡,再利用三角函數(shù)的有界性,即可得答案;(2)利用整體法求出,再利用三角函數(shù)線,即可得答案.【詳解】(1)∴,的最大值為.(2)由(1)得,∵,.,當(dāng)時(shí),即時(shí),取最小值0.當(dāng),即時(shí),取最大值.【點(diǎn)睛】本題考查向量數(shù)量積、二倍角公式、輔助角公式、三角函數(shù)的性質(zhì),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意整體法的應(yīng)用.19、(1)4;(2).【解析】

(1)當(dāng),時(shí),曲線的方程是,對絕對值內(nèi)的數(shù)進(jìn)行討論,得到四條直線圍成一個(gè)菱形,并求出面積為4;(2)對進(jìn)行討論,化簡曲線方程,并與直線方程聯(lián)立,求出點(diǎn)的坐標(biāo),由得到的關(guān)系,再利用點(diǎn)到直線的距離公式求出,從而求得.【詳解】(1)當(dāng),時(shí),曲線的方程是,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),方程等價(jià)于,當(dāng)時(shí),方程等價(jià)于,當(dāng)時(shí),方程等價(jià)于,當(dāng)時(shí),方程等價(jià)于,曲線圍成的區(qū)域?yàn)榱庑?,其面積為;(2)當(dāng),時(shí),有,聯(lián)立直線可得,當(dāng),時(shí),有,聯(lián)立直線可得,由可得,即有,化為,點(diǎn)到直線距離,由題意可得,,,即,可得,,可得當(dāng),即時(shí),點(diǎn)到直線距離取得最小值.【點(diǎn)睛】解析幾何的思想方法是坐標(biāo)法,通過代數(shù)運(yùn)算解決幾何問題,本題對運(yùn)算能力的要求是比較高的.20、(1);(2)對一切正整數(shù),有.【解析】

(1)運(yùn)用數(shù)列的遞推式,結(jié)合等差數(shù)列的定義和通項(xiàng)公式,可得所求;(2)對一切正整數(shù)n,有,考慮當(dāng)時(shí),,再由裂項(xiàng)相消求和,即可得證?!驹斀狻浚?)當(dāng)時(shí),兩式做差得,,當(dāng)時(shí),上式顯然成立,。(2)證明:當(dāng)時(shí),可得由可得即有<則當(dāng)時(shí),不等式成立。檢驗(yàn)時(shí),不等式也成立,綜上對一切正整數(shù)n,有?!军c(diǎn)睛】本題考查數(shù)列遞推式,考查數(shù)列求和,考查裂項(xiàng)法的運(yùn)用,確定數(shù)列的通項(xiàng)是關(guān)鍵.2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論