湖南省長沙市湖南師大附中博才實驗中學(xué)湘江校區(qū)2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第1頁
湖南省長沙市湖南師大附中博才實驗中學(xué)湘江校區(qū)2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第2頁
湖南省長沙市湖南師大附中博才實驗中學(xué)湘江校區(qū)2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第3頁
湖南省長沙市湖南師大附中博才實驗中學(xué)湘江校區(qū)2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第4頁
湖南省長沙市湖南師大附中博才實驗中學(xué)湘江校區(qū)2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖南省長沙市湖南師大附中博才實驗中學(xué)湘江校區(qū)2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,則的值等于()A.2 B. C. D.2.已知兩個變量x,y之間具有線性相關(guān)關(guān)系,試驗測得(x,y)的四組值分別為(1,2),(2,4),(3,5),(4,7),則y與x之間的回歸直線方程為()A.y=0.8x+3 B.y=-1.2x+7.5C.y=1.6x+0.5 D.y=1.3x+1.23.角α的終邊上有一點P(a,|a|),a∈R且a≠0,則sinα值為()A. B. C.1 D.或4.若正實數(shù)滿足,則的最小值為A. B. C. D.5.“結(jié)繩計數(shù)”是遠古時期人類智慧的結(jié)晶,即人們通過在繩子上打結(jié)來記錄數(shù)量.如圖所示的是一位農(nóng)民記錄自己采摘果實的個數(shù).在從右向左依次排列的不同繩子上打結(jié),滿四進一.根據(jù)圖示可知,農(nóng)民采摘的果實的個數(shù)是()A.493 B.383 C.183 D.1236.某公司計劃在甲、乙兩個電視臺做總時間不超過300分鐘的廣告,廣告費用不超過9萬元,甲、乙電視臺的廣告費標準分別是500元/分鐘和200元/分鐘,假設(shè)甲、乙兩個電視臺為該公司做的廣告能給公司帶來的收益分別為0.4萬元/分鐘和0.2萬元/分鐘,那么該公司合理分配在甲、乙兩個電視臺的廣告時間,能使公司獲得最大的收益是()萬元A.72 B.80 C.84 D.907.已知的定義域為,若對于,,,,,分別為某個三角形的三邊長,則稱為“三角形函數(shù)”,下例四個函數(shù)為“三角形函數(shù)”的是()A.; B.;C.; D.8.對于任意實數(shù),下列命題中正確的是()A.若,則 B.若,則C.若,則 D.若,則9.向量,,若,則()A.5 B. C. D.10.在平面坐標系中,是圓上的四段弧(如圖),點P在其中一段上,角以O(shè)x為始邊,OP為終邊,若,則P所在的圓弧最有可能的是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知圓Ω過點A(5,1),B(5,3),C(﹣1,1),則圓Ω的圓心到直線l:x﹣2y+1=0的距離為_____.12.已知,,則______.13.關(guān)于函數(shù),下列命題:①若存在,有時,成立;②在區(qū)間上是單調(diào)遞增;③函數(shù)的圖象關(guān)于點成中心對稱圖象;④將函數(shù)的圖象向左平移個單位后將與的圖象重合.其中正確的命題序號__________14.已知函數(shù),關(guān)于此函數(shù)的說法:①為周期函數(shù);②有對稱軸;③為的對稱中心;④;正確的序號是_________.15.光線從點射向y軸,經(jīng)過y軸反射后過點,則反射光線所在的直線方程是________.16.已知向量,且,則_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓,點,直線.(1)求與直線l垂直,且與圓C相切的直線方程;(2)在x軸上是否存在定點B(不同于點A),使得對于圓C上任一點P,為常數(shù)?若存在,試求這個常數(shù)值及所有滿足條件的點B的坐標;若不存在,請說明理由.18.已知函數(shù)().(1)若在區(qū)間上的值域為,求實數(shù)的值;(2)在(1)的條件下,記的角所對的邊長分別為,若,的面積為,求邊長的最小值;(3)當(dāng),時,在答題紙上填寫下表,用五點法作出的圖像,并寫出它的單調(diào)遞增區(qū)間.019.(1)求證:(2)請利用(1)的結(jié)論證明:(3)請你把(2)的結(jié)論推到更一般的情形,使之成為推廣后的特例,并加以證明:(4)化簡:.20.某校準備從高一年級的兩個男生和三個女生中選擇2個人去參加一項比賽.(1)若從這5個學(xué)生中任選2個人,求這2個人都是女生的概率;(2)若從男生和女生中各選1個人,求這2個人包括,但不包括的概率.21.已知.(1)若三點共線,求實數(shù)的值;(2)證明:對任意實數(shù),恒有成立.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

根據(jù)分段函數(shù)的定義域以及函數(shù)解析式的關(guān)系,代值即可.【詳解】故選:D【點睛】本題考查了分段函數(shù)的求值問題,考查了學(xué)生綜合分析,數(shù)學(xué)運算能力,屬于基礎(chǔ)題.2、C【解析】試題分析:設(shè)樣本中線點為,其中,即樣本中心點為,因為回歸直線必過樣本中心點,將代入四個選項只有B,C成立,畫出散點圖分析可知兩個變量x,y之間正相關(guān),故C正確.考點:回歸直線方程3、B【解析】

根據(jù)三角函數(shù)的定義,求出OP,即可求出的值.【詳解】因為,所以,故選B.【點睛】本題主要考查三角函數(shù)的定義應(yīng)用.4、D【解析】

將變成,可得,展開后利用基本不等式求解即可.【詳解】,,,,當(dāng)且僅當(dāng),取等號,故選D.【點睛】本題主要考查利用基本不等式求最值,屬于中檔題.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最小);三相等是,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)是否在定義域內(nèi),二是多次用或時等號能否同時成立).5、C【解析】

根據(jù)題意將四進制數(shù)轉(zhuǎn)化為十進制數(shù)即可.【詳解】根據(jù)題干知滿四進一,則表示四進制數(shù),將四進制數(shù)轉(zhuǎn)化為十進制數(shù),得到故答案為:C.【點睛】本題以數(shù)學(xué)文化為載體,考查了進位制等基礎(chǔ)知識,注意運用四進制轉(zhuǎn)化為十進制數(shù),考查運算能力,屬于基礎(chǔ)題.6、B【解析】

設(shè)公司在甲、乙兩個電視臺的廣告時間分別為分鐘,總收益為元,根據(jù)題意得到約束條件,目標函數(shù),平行目標函數(shù)圖象找到在縱軸上截距最大時所經(jīng)過的點,把點的坐標代入目標函數(shù)中即可.【詳解】設(shè)公司在甲、乙兩個電視臺的廣告時間分別為分鐘,總收益為元,則由題意可得可行解域:,目標函數(shù)為可行解域化簡得,,在平面直角坐標系內(nèi),畫出可行解域,如下圖所示:作直線,即,平行移動直線,當(dāng)直線過點時,目標函數(shù)取得最大值,聯(lián)立,解得,所以點坐標為,因此目標函數(shù)最大值為,故本題選B.【點睛】本題考查了應(yīng)用線性規(guī)劃知識解決實際問題的能力,正確列出約束條件,畫出可行解域是解題的關(guān)鍵.7、B【解析】由三角形的三邊關(guān)系,可得“三角形函數(shù)”的最大值小于最小值的二倍,因為單調(diào)遞增,無最大值和最小值,故排除A,,符合“三角形函數(shù)”的條件,即B正確,單調(diào)遞增,最大值為4,最小值為1,故排除C,單調(diào)遞增,最小值為1,最大值為,故排除D.故選B.點睛:本題以新定義為載體考查函數(shù)的單調(diào)性和最值;解決本題的關(guān)鍵在于正確理解“三角形函數(shù)”的含義,正確將問題轉(zhuǎn)化為“判定函數(shù)的最大值和最小值間的關(guān)系”進行處理,充分體現(xiàn)轉(zhuǎn)化思想的應(yīng)用.8、C【解析】

根據(jù)是任意實數(shù),逐一對選項進行分析即得?!驹斀狻坑深},當(dāng)時,,則A錯誤;當(dāng),時,,則B錯誤;可知,則有,因此C正確;當(dāng)時,有,可知C錯誤.故選:C【點睛】本題考查判斷正確命題,是基礎(chǔ)題。9、A【解析】

由已知等式求出,再根據(jù)模的坐標運算計算出模.【詳解】由得,解得.∴,,.故選:A.【點睛】本題考查求向量的模,考查向量的數(shù)量積,及模的坐標運算.掌握數(shù)量積和模的坐標表示是解題基礎(chǔ).10、A【解析】

根據(jù)三角函數(shù)線的定義,分別進行判斷排除即可得答案.【詳解】若P在AB段,正弦小于正切,正切有可能小于余弦;若P在CD段,正切最大,則cosα<sinα<tanα;若P在EF段,正切,余弦為負值,正弦為正,tanα<cosα<sinα;若P在GH段,正切為正值,正弦和余弦為負值,cosα<sinα<tanα.∴P所在的圓弧最有可能的是.故選:A.【點睛】本題任意角的三角函數(shù)的應(yīng)用,根據(jù)角的大小判斷角的正弦、余弦、正切值的正負及大小,為基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

求得線段和線段的垂直平分線,求這兩條垂直平分線的交點即求得圓的圓心,在求的圓心到直線的距離.【詳解】∵A(5,1),B(5,3),C(﹣1,1),∴AB的中點坐標為(5,2),則AB的垂直平分線方程為y=2;BC的中點坐標為(2,2),,則BC的垂直平分線方程為y﹣2=﹣3(x﹣2),即3x+y﹣8=1.聯(lián)立,得.∴圓Ω的圓心為Ω(2,2),則圓Ω的圓心到直線l:x﹣2y+1=1的距離為d.故答案為:【點睛】本小題主要考查根據(jù)圓上點的坐標求圓心坐標,考查點到直線的距離公式,屬于基礎(chǔ)題.12、【解析】

直接利用二倍角公式,即可得到本題答案.【詳解】因為,所以,得,由,所以.故答案為:【點睛】本題主要考查利用二倍角公式求值,屬基礎(chǔ)題.13、①③【解析】

根據(jù)題意,由于,根據(jù)函數(shù)周期為,可知①、若存在,有時,成立;正確,對于②、在區(qū)間上是單調(diào)遞減;因此錯誤,對于③、,函數(shù)的圖象關(guān)于點成中心對稱圖象,成立.對于④、將函數(shù)的圖象向左平移個單位后得到,與的圖象重合錯誤,故答案為①③考點:命題的真假點評:主要是考查了三角函數(shù)的性質(zhì)的運用,屬于基礎(chǔ)題.14、①②④【解析】

由三角函數(shù)的性質(zhì)及,分別對各選項進行驗證,即可得出結(jié)論.【詳解】解:由函數(shù),可得①,可得為周期函數(shù),故①正確;②由,,故,是偶函數(shù),故有對稱軸正確,故②正確;③為偶數(shù)時,,為奇數(shù)時,故不為的對稱中心,故③不正確;④由,可得正確,故④正確.故答案為:①②④.【點睛】本題主要考查三角函數(shù)的值域、周期性、對稱性等相關(guān)知識,綜合性大,屬于中檔題.15、(或?qū)懗桑窘馕觥?/p>

光線從點射向y軸,即反射光線反向延長線經(jīng)過關(guān)于y軸的對稱點,則反射光線通過和兩個點,設(shè)直線方程求解即可?!驹斀狻坑深}意可知,所求直線方程經(jīng)過點關(guān)于y軸的對稱點為,則所求直線方程為,即.【點睛】此題的關(guān)鍵點在于物理學(xué)上光線的反射光線和入射光線關(guān)于鏡面對稱,屬于基礎(chǔ)題目。16、【解析】

先由向量共線,求出,再由向量模的坐標表示,即可得出結(jié)果.【詳解】因為,且,所以,解得,所以,因此.故答案為【點睛】本題主要考查求向量的模,熟記向量共線的坐標表示,以及向量模的坐標表示即可,屬于基礎(chǔ)題型.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或(2)存在,,【解析】

(1)先設(shè)與直線l垂直的直線方程為,再結(jié)合點到直線的距離公式求解即可;(2)先設(shè)存在,利用都有為常數(shù)及在圓上,列出等式,然后利用恒成立求解即可.【詳解】解:(1)由直線.則可設(shè)與直線l垂直的直線方程為,又該直線與圓相切,則,則,故所求直線方程為或;(2)假設(shè)存在定點使得對于圓C上任一點P,為常數(shù),則,所以,將代入上式化簡整理得:對恒成立,所以,解得或,又,即,所以存在定點使得對于圓C上任一點P,為常數(shù).【點睛】本題考查了點到直線的距離公式,重點考查了點與圓的位置關(guān)系,屬中檔題.18、(1);(2);(3)填表見解析,作圖見解析,().【解析】

(1)利用二倍角公式和輔助角公式可把化簡為,再求出的范圍后根據(jù)正弦函數(shù)的性質(zhì)可得關(guān)于的方程組,解方程組可得它們的值.(2)先求出,再根據(jù)面積求出,最后根據(jù)余弦定理和基本不等式可求的最小值.(3)根據(jù)五點法直接作出圖像,再根據(jù)正弦函數(shù)的性質(zhì)可得函數(shù)的單調(diào)增區(qū)間.【詳解】,當(dāng)時,,則.因為,所以,解得,即.(2)由,得,又的面積為,所以,即,所以,當(dāng)且僅當(dāng)時,.(3)由題意得,填表0111作圖如下圖:由得(),所以函數(shù)的單調(diào)遞增區(qū)間是().【點睛】本題考查正弦型函數(shù)在給定范圍上的最值、余弦定理、三角形中的面積公式、正弦型函數(shù)的圖像與單調(diào)性以及基本不等式,本題綜合性較高,為中檔題.19、(1)證明見解析,(2)證明見解析,(3),證明見解析(4)【解析】

(1)右邊余切化正切后,利用二倍角的正切公式變形可證;(2)將(1)的結(jié)果變形為,然后將所證等式的右邊的正切化為余切即可得證;(3)根據(jù)(1)(2)的規(guī)律可得結(jié)果;(4)由(3)的結(jié)果可得.【詳解】(1)證明:因為,所以(2)因為,所以,所以(3)一般地:,證明:因為所以,以此類推得(4).【點睛】本題考查了歸納推理,考查了同角公式,考查了二倍角的正切公式,屬于中檔題.20、(1);(2).【解析】

(1)寫出從5個學(xué)生中任選2個人的所有等可能基本事件,計算事件2個人都是女生所含的基本事件個數(shù);(2)寫出從男生和女生中各選1個人的所有等可能基本事件,計算事件2個人包括,但不包括所含的基本事件個數(shù).【詳解】(1)由題意知,從5個學(xué)生中任選2個人,其所有等可能基本事件有:,,,,,,,,,,共10個,選2個人都是女生的事件所包含的基本事件有,,,共3個,則所求事件的概率為.(2)從男生和女生中各選1個人,其所有可能的結(jié)果組成的基本事件有,,,,,,共6

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論