西藏拉薩那曲第二高級中學(xué)2025屆高一下數(shù)學(xué)期末調(diào)研試題含解析_第1頁
西藏拉薩那曲第二高級中學(xué)2025屆高一下數(shù)學(xué)期末調(diào)研試題含解析_第2頁
西藏拉薩那曲第二高級中學(xué)2025屆高一下數(shù)學(xué)期末調(diào)研試題含解析_第3頁
西藏拉薩那曲第二高級中學(xué)2025屆高一下數(shù)學(xué)期末調(diào)研試題含解析_第4頁
西藏拉薩那曲第二高級中學(xué)2025屆高一下數(shù)學(xué)期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

西藏拉薩那曲第二高級中學(xué)2025屆高一下數(shù)學(xué)期末調(diào)研試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若向量,且,則等于()A. B. C. D.2.在長方體中,,,,則異面直線與所成角的大小為()A. B. C. D.或3.如圖是函數(shù)一個周期的圖象,則的值等于A. B. C. D.4.一個四面體的三視圖如圖所示,則該四面體的表面積是()A. B.C. D.5.己知,,若軸上方的點滿足對任意,恒有成立,則點縱坐標的最小值為()A. B. C.1 D.26.中國古代有計算多項式值的秦九韶算法,右圖是實現(xiàn)該算法的程序框圖.執(zhí)行該程序框圖,若輸入的,,依次輸入的為2,2,5,則輸出的()A.7 B.12 C.17 D.347.已知點,,則與向量的方向相反的單位向量是()A. B. C. D.8.如圖所示,垂直于以為直徑的圓所在的平面,為圓上異于的任一點,則下列關(guān)系中不正確的是()A. B.平面 C. D.9.某幾何體的三視圖如圖所示(實線部分),若圖中小正方形的邊長均為1,則該幾何體的體積是()A. B. C. D.10.已知,,那么是()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本大題共6小題,每小題5分,共30分。11.已知正數(shù)、滿足,則的最大值為__________.12.在,若,,,則__________________.13.已知向量,若向量與垂直,則等于_______.14.方程的解集是__________.15.已知,則_________.16.在平行六面體中,為與的交點,若存在實數(shù),使向量,則__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,已知四棱錐的側(cè)棱底面,且底面是直角梯形,,,,,,點在棱上,且.(1)證明:平面;(2)求三棱錐的體積.18.已知數(shù)列滿足,,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.19.已知函數(shù).(1)若,且對任意的,恒成立,求實數(shù)的取值范圍;(2)求,解關(guān)于的不等式.20.已知是等差數(shù)列,為其前項和,且,.(1)求數(shù)列的通項公式;(2)若數(shù)列滿足,求數(shù)列的前項和.21.如圖,在三棱柱中,平面平面,,,為棱的中點.(1)證明:;(2)求三棱柱的高.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

根據(jù)坐標形式下向量的平行對應(yīng)的等量關(guān)系,即可計算出的值,再根據(jù)坐標形式下向量的加法即可求解出的坐標表示.【詳解】因為且,所以,所以,所以.故選:B.【點睛】本題考查根據(jù)坐標形式下向量的平行求解參數(shù)以及向量加法的坐標運算,難度較易.已知,若則有.2、C【解析】

平移CD到AB,則即為異面直線與所成的角,在直角三角形中即可求解.【詳解】連接AC1,CD//AB,可知即為異面直線與所成的角,在中,,故選.【點睛】本題考查異面直線所成的角.常用方法:1、平移直線到相交;2、向量法.3、A【解析】

利用圖象得到振幅,周期,所以,再由圖象關(guān)于成中心對稱,把原式等價于求的值.【詳解】由圖象得:振幅,周期,所以,所以,因為圖象關(guān)于成中心對稱,所以,,所以原式,故選A.【點睛】本題考查三角函數(shù)的周期性、對稱性等性質(zhì),如果算出每個值再相加,會浪費較多時間,且容易出錯,采用對稱性求解,能使問題的求解過程變得更簡潔.4、B【解析】

試題分析:由三視圖可知,該幾何體是如下圖所示的三棱錐,其中平面平面,,且,,所以,與均為正三角形,且邊長為,所以,故該三棱錐的表面各為,故選B.考點:1.三視圖;2.多面體的表面積與體積.5、D【解析】

由題意首先利用平面向量的坐標運算法則確定縱坐標的解析式,然后結(jié)合二次函數(shù)的性質(zhì)確定點P縱坐標的最小值即可.【詳解】設(shè),則,,故,恒成立,即恒成立,據(jù)此可得:,故,當且僅當時等號成立.據(jù)此可得的最小值為,則的最小值為.即點縱坐標的最小值為2.故選D.【點睛】本題主要考查平面向量的坐標運算,二次函數(shù)最值的求解等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.6、C【解析】第一次循環(huán):a=2,s=2,k=1;第二次循環(huán):a=2,s=6,k=2;第三次循環(huán):a=5,s=17,k=3>2;結(jié)束循環(huán),輸出s=17,選C.點睛:算法與流程圖的考查,側(cè)重于對流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學(xué)問題,是求和還是求項.7、A【解析】

根據(jù)單位向量的定義即可求解.【詳解】,向量的方向相反的單位向量為,故選A.【點睛】本題主要考查了向量的坐標運算,向量的單位向量的概念,屬于中檔題.8、C【解析】

由平面,得,再由,得到平面,進而得到,即可判斷出結(jié)果.【詳解】因為垂直于以為直徑的圓所在的平面,即平面,得,A正確;又為圓上異于的任一點,所以,平面,,B,D均正確.故選C.【點睛】本題主要考查線面垂直,熟記線面垂直的判定定理與性質(zhì)定理即可,屬于??碱}型.9、A【解析】

由三視圖得出原幾何體是由半個圓錐與半個圓柱組成的組合體,并且由三視圖得出圓柱和圓錐的底面半徑,圓錐的高,圓柱的高,再由圓柱和圓錐的體積公式得解.【詳解】由三視圖可知,幾何體是由半個圓錐與半個圓柱組成的組合體,其中圓柱和圓錐的底面半徑,圓錐的高,圓柱的高所以圓柱的體積,圓錐的體積,所以組合體的體積.故選B.【點睛】本題主要考查空間幾何體的三視圖和空間幾何體圓柱和圓錐的體積,屬于基礎(chǔ)題.10、C【解析】

根據(jù),,可判斷所在象限.【詳解】,在三四象限.,在一三象限,故在第三象限答案為C【點睛】本題考查了三角函數(shù)在每個象限的正負,屬于基礎(chǔ)題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

直接利用均值不等式得到答案.【詳解】,當即時等號成立.故答案為:【點睛】本題考查了均值不等式,意在考查學(xué)生的計算能力.12、【解析】

由,故用二倍角公式算出,再用余弦定理算得即可.【詳解】,又,,又,代入得,所以.故答案為【點睛】本題主要考查二倍角公式與余弦定理,屬于基礎(chǔ)題型.13、2【解析】

根據(jù)向量的數(shù)量積的運算公式,列出方程,即可求解.【詳解】由題意,向量,因為向量與垂直,所以,解得.故答案為:2.【點睛】本題主要考查了向量的坐標運算,以及向量的垂直關(guān)系的應(yīng)用,著重考查了推理與運算能力,屬于基礎(chǔ)題.14、【解析】

令,,將原方程化為關(guān)于的一元二次方程,解出得到,進而得出方程的解集.【詳解】令,,故原方程可化為,解得或,故而或,即方程的解集是,故答案為.【點睛】本題主要考查了指數(shù)方程的解法,轉(zhuǎn)化為一元二次方程是解題的關(guān)鍵,屬于基礎(chǔ)題.15、【解析】由題意可得:點睛:熟記同角三角函數(shù)關(guān)系式及誘導(dǎo)公式,特別是要注意公式中的符號問題;注意公式的變形應(yīng)用,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α及sinα=tanα·cosα等.這是解題中常用到的變形,也是解決問題時簡化解題過程的關(guān)鍵所在.16、【解析】

在平行六面體中把向量用用表示,再利用待定系數(shù)法,求得.再求解?!驹斀狻咳鐖D所示:因為,又因為,所以,所以.故答案為:【點睛】本題主要考查了空間向量的基本定理,還考查了運算求解的能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)4【解析】

(1)取的三等分點,使,證四邊形為平行四邊形,運用線面平行判定定理證明.(2)三棱錐的體積可以用求出結(jié)果.【詳解】(1)證明:取的三等分點,使,連接,.因為,,所以,.因為,,所以,,所以四邊形為平行四邊形,所以,因為平面,平面,所以平面.(2)解:因為,,所以的面積為,因為底面,所以三棱錐的高為,所以三棱錐的體積為.因為,所以三棱錐的高為,所以三棱錐的體積為,故三棱錐的體積為.【點睛】本題考查了線面平行的判定定理、三棱錐體積的計算,在證明線面平行時需要構(gòu)造平行四邊形來證明,三棱錐的體積計算可以選用割、補等方法.18、(1);(2)【解析】

(1)由,構(gòu)造是以為首項,為公比等比數(shù)列,利用等比數(shù)列的通項公式可得結(jié)果;(2)由(1)得,利用裂項相消可求.【詳解】(1)由得:,即,且數(shù)列是以為首項,為公比的等比數(shù)列數(shù)列的通項公式為:(2)由(1)得:【點睛】關(guān)系式可構(gòu)造為,中檔題。19、(1)(2)見解析【解析】

(1)由題意,若,則函數(shù)關(guān)于對稱,根據(jù)二次函數(shù)對稱性,可求,代入化簡得在上恒成立,由,知當為最小值,根據(jù)恒成立思想,令最小值,即可求解;(2)根據(jù)題意,由,化簡一元二次不等式為,討論參數(shù)范圍,寫出解集即可.【詳解】解:(1)若,所以函數(shù)對稱軸,.,即在恒成立,即在上恒成立所以,又,故(2),所以;原不等式變?yōu)椋驗?,所?所以當,即時,解為;當時,解集為;當,即時,解為綜上,當時,不等式的解集為;當時,不等式的解集為必;當時,不等式的解隼為【點睛】本題考查(1)函數(shù)恒成立問題;(2)含參一元二次不等式的解法;考查計算能力,考查分類討論思想,屬于中等題型.20、(1)(2)【解析】

(1)由等差數(shù)列的通項公式和前n項和公式,利用已知條件求出首項和公差,由此能求出an=2n+3(2)由得,由此能求出數(shù)列的前項和.【詳解】解:(1)是等差數(shù)列,為其前項和解得:.(2),,,又.是以3為首項2為公比的等比數(shù)列.【點睛】本題考查數(shù)列的通項公式的求法,考查數(shù)列的前項和的求法解題時要認真審題注意等差數(shù)列和等比數(shù)列的性質(zhì)的靈活運用.21、(1)證明見解析(2)【解析】

(1)連接,,作為棱的中點,連結(jié),,由平面平面,得到平面,則,再由,即可證明平面,從而得證;(2)根據(jù)等體積法求出點面距.【詳解】(1)證

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論