山東省棗莊市第七中學2024年中考沖刺卷數學試題含解析_第1頁
山東省棗莊市第七中學2024年中考沖刺卷數學試題含解析_第2頁
山東省棗莊市第七中學2024年中考沖刺卷數學試題含解析_第3頁
山東省棗莊市第七中學2024年中考沖刺卷數學試題含解析_第4頁
山東省棗莊市第七中學2024年中考沖刺卷數學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省棗莊市第七中學2024年中考沖刺卷數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列事件中,屬于不確定事件的是()A.科學實驗,前100次實驗都失敗了,第101次實驗會成功B.投擲一枚骰子,朝上面出現的點數是7點C.太陽從西邊升起來了D.用長度分別是3cm,4cm,5cm的細木條首尾順次相連可組成一個直角三角形2.如圖,AB是⊙O的直徑,D,E是半圓上任意兩點,連接AD,DE,AE與BD相交于點C,要使△ADC與△BDA相似,可以添加一個條件.下列添加的條件中錯誤的是()A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD3.若關于x的一元二次方程x2﹣2x+m=0沒有實數根,則實數m的取值是()A.m<1 B.m>﹣1 C.m>1 D.m<﹣14.正方形ABCD在直角坐標系中的位置如圖所示,將正方形ABCD繞點A按順時針方向旋轉180°后,C點的坐標是()A.(2,0) B.(3,0) C.(2,-1) D.(2,1)5.若關于x的不等式組恰有3個整數解,則字母a的取值范圍是()A.a≤﹣1 B.﹣2≤a<﹣1 C.a<﹣1 D.﹣2<a≤﹣16.下列各式計算正確的是()A.a4?a3=a12 B.3a?4a=12a C.(a3)4=a12 D.a12÷a3=a47.若代數式,,則M與N的大小關系是()A. B. C. D.8.若正比例函數y=mx(m是常數,m≠0)的圖象經過點A(m,4),且y的值隨x值的增大而減小,則m等于()A.2 B.﹣2 C.4 D.﹣49.如圖,菱形ABCD的邊長為2,∠B=30°.動點P從點B出發(fā),沿B-C-D的路線向點D運動.設△ABP的面積為y(B、P兩點重合時,△ABP的面積可以看作0),點P運動的路程為x,則y與x之間函數關系的圖像大致為()A. B. C. D.10.如圖,直線AB、CD相交于點O,EO⊥CD,下列說法錯誤的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知直線與軸、軸相交于、兩點,與的圖象相交于、兩點,連接、.給出下列結論:①;②;③;④不等式的解集是或.其中正確結論的序號是__________.12.如圖,直線a,b被直線c所截,a∥b,∠1=∠2,若∠3=40°,則∠4等于________.13.如圖AB是直徑,C、D、E為圓周上的點,則______.14.當﹣4≤x≤2時,函數y=﹣(x+3)2+2的取值范圍為_____________.15.分解因式:=___________.16.若是關于的完全平方式,則__________.17.某市對九年級學生進行“綜合素質”評價,評價結果分為A,B,C,D,E五個等級.現隨機抽取了500名學生的評價結果作為樣本進行分析,繪制了如圖所示的統計圖.已知圖中從左到右的五個長方形的高之比為2:3:3:1:1,據此估算該市80000名九年級學生中“綜合素質”評價結果為“A”的學生約為_____人.三、解答題(共7小題,滿分69分)18.(10分)如圖1,B(2m,0),C(3m,0)是平面直角坐標系中兩點,其中m為常數,且m>0,E(0,n)為y軸上一動點,以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點C逆時針旋轉90°得△A′D′C′,連接ED′,拋物線()過E,A′兩點.(1)填空:∠AOB=°,用m表示點A′的坐標:A′(,);(2)當拋物線的頂點為A′,拋物線與線段AB交于點P,且時,△D′OE與△ABC是否相似?說明理由;(3)若E與原點O重合,拋物線與射線OA的另一個交點為點M,過M作MN⊥y軸,垂足為N:①求a,b,m滿足的關系式;②當m為定值,拋物線與四邊形ABCD有公共點,線段MN的最大值為10,請你探究a的取值范圍.19.(5分)如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,點D在AB上,DE⊥EB.(1)求證:AC是△BDE的外接圓的切線;(2)若AD=23,AE=6,求EC的長.20.(8分)先化簡,再求值:,其中.21.(10分)如圖1所示是一輛直臂高空升降車正在進行外墻裝飾作業(yè).圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉動點A離地面BD的高度AH為2m.當起重臂AC長度為8m,張角∠HAC為118°時,求操作平臺C離地面的高度.(果保留小數點后一位,參考數據:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)22.(10分)閱讀材料:已知點和直線,則點P到直線的距離d可用公式計算.例如:求點到直線的距離.

解:因為直線可變形為,其中,所以點到直線的距離為:.根據以上材料,求:點到直線的距離,并說明點P與直線的位置關系;已知直線與平行,求這兩條直線的距離.23.(12分)先化簡:,然后在不等式的非負整數解中選擇一個適當的數代入求值.24.(14分)已知函數y=(x>0)的圖象與一次函數y=ax﹣2(a≠0)的圖象交于點A(3,n).(1)求實數a的值;(2)設一次函數y=ax﹣2(a≠0)的圖象與y軸交于點B,若點C在y軸上,且S△ABC=2S△AOB,求點C的坐標.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

根據事件發(fā)生的可能性大小判斷相應事件的類型即可.【詳解】解:A、是隨機事件,故A符合題意;B、是不可能事件,故B不符合題意;C、是不可能事件,故C不符合題意;D、是必然事件,故D不符合題意;故選A.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.2、D【解析】

解:∵∠ADC=∠ADB,∠ACD=∠DAB,∴△ADC∽△BDA,故A選項正確;∵AD=DE,∴,∴∠DAE=∠B,∴△ADC∽△BDA,∴故B選項正確;∵AD2=BD?CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C選項正確;∵CD?AB=AC?BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是對應夾角,故D選項錯誤,故選:D.考點:1.圓周角定理2.相似三角形的判定3、C【解析】試題解析:關于的一元二次方程沒有實數根,,解得:故選C.4、B【解析】試題分析:正方形ABCD繞點A順時針方向旋轉180°后,C點的對應點與C一定關于A對稱,A是對稱點連線的中點,據此即可求解.試題解析:AC=2,則正方形ABCD繞點A順時針方向旋轉180°后C的對應點設是C′,則AC′=AC=2,則OC′=3,故C′的坐標是(3,0).故選B.考點:坐標與圖形變化-旋轉.5、B【解析】

根據“同大取大,同小取小,大小小大取中間,大大小小無解”即可求出字母a的取值范圍.【詳解】解:∵x的不等式組恰有3個整數解,∴整數解為1,0,-1,∴-2≤a<-1.故選B.【點睛】本題考查了一元一次不等式組的解法,先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分.6、C【解析】

根據同底數冪的乘法,可判斷A、B,根據冪的乘方,可判斷C,根據同底數冪的除法,可判斷D.【詳解】A.a4?a3=a7,故A錯誤;B.3a?4a=12a2,故B錯誤;C.(a3)4=a12,故C正確;D.a12÷a3=a9,故D錯誤.故選C.【點睛】本題考查了同底數冪的除法,同底數冪的除法底數不變指數相減是解題的關鍵.7、C【解析】∵,∴,∴.故選C.8、B【解析】

利用待定系數法求出m,再結合函數的性質即可解決問題.【詳解】解:∵y=mx(m是常數,m≠0)的圖象經過點A(m,4),∴m2=4,∴m=±2,∵y的值隨x值的增大而減小,∴m<0,∴m=﹣2,故選:B.【點睛】本題考查待定系數法,一次函數的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.9、C【解析】

先分別求出點P從點B出發(fā),沿B→C→D向終點D勻速運動時,當0<x≤2和2<x≤4時,y與x之間的函數關系式,即可得出函數的圖象.【詳解】由題意知,點P從點B出發(fā),沿B→C→D向終點D勻速運動,則

當0<x≤2,y=x,

當2<x≤4,y=1,

由以上分析可知,這個分段函數的圖象是C.

故選C.10、C【解析】

根據對頂角性質、鄰補角定義及垂線的定義逐一判斷可得.【詳解】A、∠AOD與∠BOC是對頂角,所以∠AOD=∠BOC,此選項正確;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此選項正確;C、∠AOC與∠BOD是對頂角,所以∠AOC=∠BOD,此選項錯誤;D、∠AOD與∠BOD是鄰補角,所以∠AOD+∠BOD=180°,此選項正確;故選C.【點睛】本題主要考查垂線、對頂角與鄰補角,解題的關鍵是掌握對頂角性質、鄰補角定義及垂線的定義.二、填空題(共7小題,每小題3分,滿分21分)11、②③④【解析】分析:根據一次函數和反比例函數的性質得到k1k2>0,故①錯誤;把A(-2,m)、B(1,n)代入y=中得到-2m=n故②正確;把A(-2,m)、B(1,n)代入y=k1x+b得到y=-mx-m,求得P(-1,0),Q(0,-m),根據三角形的面積公式即可得到S△AOP=S△BOQ;故③正確;根據圖象得到不等式k1x+b>的解集是x<-2或0<x<1,故④正確.詳解:由圖象知,k1<0,k2<0,∴k1k2>0,故①錯誤;把A(-2,m)、B(1,n)代入y=中得-2m=n,∴m+n=0,故②正確;把A(-2,m)、B(1,n)代入y=k1x+b得,∴,∵-2m=n,∴y=-mx-m,∵已知直線y=k1x+b與x軸、y軸相交于P、Q兩點,∴P(-1,0),Q(0,-m),∴OP=1,OQ=m,∴S△AOP=m,S△BOQ=m,∴S△AOP=S△BOQ;故③正確;由圖象知不等式k1x+b>的解集是x<-2或0<x<1,故④正確;故答案為:②③④.點睛:本題考查了反比例函數與一次函數的交點,求兩直線的交點坐標,三角形面積的計算,正確的理解題意是解題的關鍵.12、70°【解析】

試題分析:由平角的定義可知,∠1+∠2+∠3=180°,又∠1=∠2,∠3=40°,所以∠1=(180°-40°)÷2=70°,因為a∥b,所以∠4=∠1=70°.故答案為70°.考點:角的計算;平行線的性質.13、90°【解析】

連接OE,根據圓周角定理即可求出答案.【詳解】解:連接OE,

根據圓周角定理可知:

∠C=∠AOE,∠D=∠BOE,

則∠C+∠D=(∠AOE+∠BOE)=90°,

故答案為:90°.【點睛】本題主要考查了圓周角定理,解題要掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.14、-23≤y≤2【解析】

先根據a=-1判斷出拋物線的開口向下,故有最大值,可知對稱軸x=-3,再根據-4≤x≤2,可知當x=-3時y最大,把x=2時y最小代入即可得出結論.【詳解】解:∵a=-1,

∴拋物線的開口向下,故有最大值,

∵對稱軸x=-3,

∴當x=-3時y最大為2,

當x=2時y最小為-23,

∴函數y的取值范圍為-23≤y≤2,故答案為:-23≤y≤2.【點睛】本題考查二次函數的性質,掌握拋物線的開口方向、對稱軸以及增減性是解題關鍵.15、【解析】

直接利用完全平方公式分解因式得出答案.【詳解】解:=,故答案為.【點睛】此題主要考查了公式法分解因式,正確應用完全平方公式是解題關鍵.16、1或-1【解析】【分析】直接利用完全平方公式的定義得出2(m-3)=±8,進而求出答案.詳解:∵x2+2(m-3)x+16是關于x的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案為-1或1.點睛:此題主要考查了完全平方公式,正確掌握完全平方公式的基本形式是解題關鍵.17、16000【解析】

用畢業(yè)生總人數乘以“綜合素質”等級為A的學生所占的比即可求得結果.【詳解】∵A,B,C,D,E五個等級在統計圖中的高之比為2:3:3:1:1,∴該市80000名九年級學生中“綜合素質”評價結果為“A”的學生約為80000×=16000,故答案為16000.【點睛】本題考查了條形統計圖的應用,讀懂統計圖,從統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據.三、解答題(共7小題,滿分69分)18、(1)45;(m,﹣m);(2)相似;(3)①;②.【解析】試題分析:(1)由B與C的坐標求出OB與OC的長,進一步表示出BC的長,再證三角形AOB為等腰直角三角形,即可求出所求角的度數;由旋轉的性質得,即可確定出A′坐標;(2)△D′OE∽△ABC.表示出A與B的坐標,由,表示出P坐標,由拋物線的頂點為A′,表示出拋物線解析式,把點E坐標代入即可得到m與n的關系式,利用三角形相似即可得證;(3)①當E與原點重合時,把A與E坐標代入,整理即可得到a,b,m的關系式;②拋物線與四邊形ABCD有公共點,可得出拋物線過點C時的開口最大,過點A時的開口最小,分兩種情況考慮:若拋物線過點C(3m,0),此時MN的最大值為10,求出此時a的值;若拋物線過點A(2m,2m),求出此時a的值,即可確定出拋物線與四邊形ABCD有公共點時a的范圍.試題解析:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO為等腰直角三角形,∴∠AOB=45°,由旋轉的性質得:OD′=D′A′=m,即A′(m,﹣m);故答案為45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵,∴P(2m,m),∵A′為拋物線的頂點,∴設拋物線解析式為,∵拋物線過點E(0,n),∴,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①當點E與點O重合時,E(0,0),∵拋物線過點E,A,∴,整理得:,即;②∵拋物線與四邊形ABCD有公共點,∴拋物線過點C時的開口最大,過點A時的開口最小,若拋物線過點C(3m,0),此時MN的最大值為10,∴a(3m)2﹣(1+am)?3m=0,整理得:am=,即拋物線解析式為,由A(2m,2m),可得直線OA解析式為y=x,聯立拋物線與直線OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,當m=2時,a=;若拋物線過點A(2m,2m),則,解得:am=2,∵m=2,∴a=1,則拋物線與四邊形ABCD有公共點時a的范圍為.考點:1.二次函數綜合題;2.壓軸題;3.探究型;4.最值問題.19、(1)證明見解析;(2)1.【解析】試題分析:(1)取BD的中點0,連結OE,如圖,由∠BED=90°,根據圓周角定理可得BD為△BDE的外接圓的直徑,點O為△BDE的外接圓的圓心,再證明OE∥BC,得到∠AEO=∠C=90°,于是可根據切線的判定定理判斷AC是△BDE的外接圓的切線;(2)設⊙O的半徑為r,根據勾股定理得62+r2=(r+23)2,解得r=23,根據平行線分線段成比例定理,由OE∥BC得AECE試題解析:(1)證明:取BD的中點0,連結OE,如圖,∵DE⊥EB,∴∠BED=90°,∴BD為△BDE的外接圓的直徑,點O為△BDE的外接圓的圓心,∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠EB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴OE⊥AE,∴AC是△BDE的外接圓的切線;(2)解:設⊙O的半徑為r,則OA=OD+DA=r+23,OE=r,在Rt△AEO中,∵AE2+OE2=AO2,∴62+r2=(r+23)2,解得r=23,∵OE∥BC,∴AECE=AO∴CE=1.考點:1、切線的判定;2、勾股定理20、,4.【解析】

先括號內通分,然后計算除法,最后代入化簡即可.【詳解】原式=.當時,原式=4.【點睛】此題考查分式的化簡求值,解題關鍵在于掌握運算法則.21、5.8【解析】

過點作于點,過點作于點,易得四邊形為矩形,則,再計算出,在中,利用正弦可計算出CF的長度,然后計算CF+EF即可.【詳解】解:如圖,過點作于點,過點作于點,.又,.∴四邊形為矩形.在中,,..答:操作平臺離地面的高度約為.【點睛】本題考查了解直角三角形的應用,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論