版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆山東臨沂市高一下數(shù)學(xué)期末聯(lián)考模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.函數(shù)的圖像的一條對(duì)稱軸是()A. B. C. D.2.等差數(shù)列中,,則().A.110 B.120 C.130 D.1403.若平面∥平面,直線∥平面,則直線與平面的關(guān)系為()A.∥ B. C.∥或 D.4.已知函數(shù),則下列說法正確的是()A.圖像的對(duì)稱中心是B.在定義域內(nèi)是增函數(shù)C.是奇函數(shù)D.圖像的對(duì)稱軸是5.已知扇形圓心角為,面積為,則扇形的弧長(zhǎng)等于()A. B. C. D.6.中,,則()A. B. C.或 D.7.下列說法正確的是()A.命題“若,則.”的否命題是“若,則.”B.是函數(shù)在定義域上單調(diào)遞增的充分不必要條件C.D.若命題,則8.某三棱錐的三視圖如圖所示,該三棱錐的外接球表面積為()A. B. C. D.9.在等差數(shù)列中,若,則()A.8 B.12 C.14 D.1010.已知函數(shù)f(x),則f[f(2)]=()A.1 B.2 C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,在等腰直角三角形ABC中,,,以AB為直徑在外作半圓O,P是半圓弧AB上的動(dòng)點(diǎn),點(diǎn)Q在斜邊BC上,若,則的取值范圍是________.12.在數(shù)列中,,是其前項(xiàng)和,當(dāng)時(shí),恒有、、成等比數(shù)列,則________.13.若直線l1:y=kx+1與直線l2關(guān)于點(diǎn)(2,3)對(duì)稱,則直線l2恒過定點(diǎn)_____,l1與l2的距離的最大值是_____.14.在中,,,是角,,所對(duì)應(yīng)的邊,,,如果,則________.15.在中,為邊中點(diǎn),且,,則______.16.分形幾何學(xué)是美籍法國(guó)數(shù)學(xué)家伯努瓦.B.曼德爾布羅特在20世紀(jì)70年代創(chuàng)立的一門新學(xué)科,它的創(chuàng)立,為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路,下圖是按照一定的分形規(guī)律生長(zhǎng)成一個(gè)數(shù)形圖,則第13行的實(shí)心圓點(diǎn)的個(gè)數(shù)是________三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知.若三點(diǎn)共線,求實(shí)數(shù)的值.18.已知函數(shù).(1)求的最小正周期.(2)求在區(qū)間上的最小值.19.在如圖所示的幾何體中,D是AC的中點(diǎn),EF∥DB.(Ⅰ)已知AB=BC,AE=EC.求證:AC⊥FB;(Ⅱ)已知G,H分別是EC和FB的中點(diǎn).求證:GH∥平面ABC.20.已知直線恒過定點(diǎn),圓經(jīng)過點(diǎn)和定點(diǎn),且圓心在直線上.(1)求圓的方程;(2)已知點(diǎn)為圓直徑的一個(gè)端點(diǎn),若另一端點(diǎn)為點(diǎn),問軸上是否存在一點(diǎn),使得為直角三角形,若存在,求出的值;若不存在,說明理由.21.已知數(shù)列中,,點(diǎn)在直線上,其中.(1)令,求證數(shù)列是等比數(shù)列;(2)求數(shù)列的通項(xiàng);(3)設(shè)、分別為數(shù)列、的前項(xiàng)和是否存在實(shí)數(shù),使得數(shù)列為等差數(shù)列?若存在,試求出,若不存在,則說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】對(duì)稱軸穿過曲線的最高點(diǎn)或最低點(diǎn),把代入后得到,因而對(duì)稱軸為,選.2、B【解析】
直接運(yùn)用等差數(shù)列的下標(biāo)關(guān)系即可求出的值.【詳解】因?yàn)閿?shù)列是等差數(shù)列,所以,因此,故本題選B.【點(diǎn)睛】本題考查了等差數(shù)列下標(biāo)性質(zhì),考查了數(shù)學(xué)運(yùn)算能力.3、C【解析】
利用空間幾何體,發(fā)揮直觀想象,易得直線與平面的位置關(guān)系.【詳解】設(shè)平面為長(zhǎng)方體的上底面,平面為長(zhǎng)方體的下底面,因?yàn)橹本€∥平面,所以直線通過平移后,可能與平面平行,也可能平移到平面內(nèi),所以∥或.【點(diǎn)睛】空間中點(diǎn)、線、面位置關(guān)系問題,??梢越柚L(zhǎng)方體進(jìn)行研究,考查直觀想象能力.4、A【解析】
根據(jù)正切函數(shù)的圖象與性質(zhì)逐一判斷即可.【詳解】.,由得,,的對(duì)稱中心為,,故正確;.在定義域內(nèi)不是增函數(shù),故錯(cuò)誤;.為非奇非偶函數(shù),故錯(cuò)誤;.的圖象不是軸對(duì)稱圖形,故錯(cuò)誤.故選.【點(diǎn)睛】本題考查了正切函數(shù)的圖象與性質(zhì),考查了整體思想,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬基礎(chǔ)題.5、C【解析】
根據(jù)扇形面積公式得到半徑,再計(jì)算扇形弧長(zhǎng).【詳解】扇形弧長(zhǎng)故答案選C【點(diǎn)睛】本題考查了扇形的面積和弧長(zhǎng)公式,解出扇形半徑是解題的關(guān)鍵,意在考查學(xué)生的計(jì)算能力.6、A【解析】
根據(jù)正弦定理,可得,然后根據(jù)大邊對(duì)大角,可得結(jié)果..【詳解】由,所以由,所以故,所以故選:A【點(diǎn)睛】本題考查正弦定理的應(yīng)用,屬基礎(chǔ)題.7、D【解析】“若p則q”的否命題是“若則”,所以A錯(cuò)。在定義上并不是單調(diào)遞增函數(shù),所以B錯(cuò)。不存在,C錯(cuò)。全稱性命題的否定是特稱性命題,D對(duì),選D.8、D【解析】
根據(jù)三視圖還原幾何體,由三棱錐的幾何特征即可求出其外接球表面積.【詳解】根據(jù)三視圖可知,該幾何體如圖所示:所以該幾何體的外接球,即是長(zhǎng)方體的外接球.因?yàn)?,所以外接球直徑.故該三棱錐的外接球表面積為.故選:D.【點(diǎn)睛】本題主要考查由三視圖還原幾何體,并計(jì)算其外接球的表面積,意在考查學(xué)生的直觀想象能力和數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.9、C【解析】
將,分別用和的形式表示,然后求解出和的值即可表示.【詳解】設(shè)等差數(shù)列的首項(xiàng)為,公差為,則由,,得解得,,所以.故選C.【點(diǎn)睛】本題考查等差數(shù)列的基本量的求解,難度較易.已知等差數(shù)列的任意兩項(xiàng)的值,可通過構(gòu)建和的方程組求通項(xiàng)公式.10、B【解析】
根據(jù)分段函數(shù)的表達(dá)式求解即可.【詳解】由題.故選:B【點(diǎn)睛】本題主要考查了分段函數(shù)的求值,屬于基礎(chǔ)題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
建立直角坐標(biāo)系,得出的坐標(biāo),利用數(shù)量積的坐標(biāo)表示得出,結(jié)合正弦函數(shù)的單調(diào)性得出的取值范圍.【詳解】取中點(diǎn)為,建立如下圖所示的直角坐標(biāo)系則,設(shè),,則,則設(shè)點(diǎn),則,則當(dāng),即時(shí),取最大值當(dāng),即時(shí),取最小值則的取值范圍是故答案為:【點(diǎn)睛】本題主要考查了利用數(shù)量積求參數(shù)以及求正弦型函數(shù)的最值,屬于較難題.12、.【解析】
由題意得出,當(dāng)時(shí),由,代入,化簡(jiǎn)得出,利用倒數(shù)法求出的通項(xiàng)公式,從而得出的表達(dá)式,于是可求出的值.【詳解】當(dāng)時(shí),由題意可得,即,化簡(jiǎn)得,得,兩邊取倒數(shù)得,,所以,數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列,,,則,因此,,故答案為:.【點(diǎn)睛】本題考查數(shù)列極限的計(jì)算,同時(shí)也考查了數(shù)列通項(xiàng)的求解,在含的數(shù)列遞推式中,若作差法不能求通項(xiàng)時(shí),可利用轉(zhuǎn)化為的遞推公式求通項(xiàng),考查分析問題和解決問題的能力,綜合性較強(qiáng),屬于中等題.13、(4,5)4.【解析】
根據(jù)所過定點(diǎn)與所過定點(diǎn)關(guān)于對(duì)稱可得,與的距離的最大值就是兩定點(diǎn)之間的距離.【詳解】∵直線:經(jīng)過定點(diǎn),又兩直線關(guān)于點(diǎn)對(duì)稱,則兩直線經(jīng)過的定點(diǎn)也關(guān)于點(diǎn)對(duì)稱∴直線恒過定點(diǎn),∴與的距離的最大值就是兩定點(diǎn)之間的距離,即為.故答案為:,.【點(diǎn)睛】本題考查了過兩條直線交點(diǎn)的直線系方程,屬于基礎(chǔ)題.14、【解析】
首先利用同角三角函數(shù)的基本關(guān)系求出,再利用正弦定理即可求解.【詳解】在中,,,即,,,即,,,,,即,,,即,,,由正弦定理得,,,故答案為:【點(diǎn)睛】本題考查了同角三角函數(shù)的基本關(guān)系以及正弦定理解三角形,需熟記公式,屬于基礎(chǔ)題.15、0【解析】
根據(jù)向量,,取模平方相減得到答案.【詳解】?jī)蓚€(gè)等式平方相減得到:故答案為0【點(diǎn)睛】本題考查了向量的加減,模長(zhǎng),意在考查學(xué)生的計(jì)算能力.16、【解析】
觀察圖像可知每一個(gè)實(shí)心圓點(diǎn)的下一行均分為一個(gè)實(shí)心圓點(diǎn)與一個(gè)空心圓點(diǎn),每個(gè)空心圓點(diǎn)下一行均為實(shí)心圓點(diǎn).再利用規(guī)律找到行與行之間的遞推關(guān)系即可.【詳解】由圖像可得每一個(gè)實(shí)心圓點(diǎn)的下一行均分為一個(gè)實(shí)心圓點(diǎn)與一個(gè)空心圓點(diǎn),每個(gè)空心圓點(diǎn)下一行均為實(shí)心圓點(diǎn).故從第三行開始,每行的實(shí)心圓點(diǎn)數(shù)均為前兩行之和.即.故第1到第13行中實(shí)心圓點(diǎn)的個(gè)數(shù)分別為:.故答案為:【點(diǎn)睛】本題主要考查了遞推數(shù)列的實(shí)際運(yùn)用,需要觀察求得行與行之間的實(shí)心圓點(diǎn)的遞推關(guān)系,屬于中等題型.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】
計(jì)算出由三點(diǎn)共線解出即可.【詳解】解:,∵三點(diǎn)共線,∴,∴【點(diǎn)睛】本題考查3點(diǎn)共線的向量表示,屬于基礎(chǔ)題.18、(1);(2).【解析】試題分析:本題主要考查倍角公式、兩角和的正弦公式、三角函數(shù)的周期、三角函數(shù)的最值等基礎(chǔ)知識(shí),考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計(jì)算能力.(Ⅰ)先利用倍角公式將降冪,再利用兩角和的正弦公式將化簡(jiǎn),使之化簡(jiǎn)成的形式,最后利用計(jì)算函數(shù)的最小正周期;(Ⅱ)將的取值范圍代入,先求出的范圍,再數(shù)形結(jié)合得到三角函數(shù)的最小值.試題解析:(Ⅰ)∵,∴的最小正周期為.(Ⅱ)∵,∴.當(dāng),即時(shí),取得最小值.∴在區(qū)間上的最小值為.考點(diǎn):倍角公式、兩角和的正弦公式、三角函數(shù)的周期、三角函數(shù)的最值.19、(Ⅰ)證明:見解析;(Ⅱ)見解析.【解析】試題分析:(Ⅰ)根據(jù),知與確定一個(gè)平面,連接,得到,,從而平面,證得.(Ⅱ)設(shè)的中點(diǎn)為,連,在,中,由三角形中位線定理可得線線平行,證得平面平面,進(jìn)一步得到平面.試題解析:(Ⅰ)證明:因,所以與確定平面.連接,因?yàn)闉榈闹悬c(diǎn),所以,同理可得.又,所以平面,因?yàn)槠矫妫?(Ⅱ)設(shè)的中點(diǎn)為,連.在中,因?yàn)槭堑闹悬c(diǎn),所以,又,所以.在中,因?yàn)槭堑闹悬c(diǎn),所以,又,所以平面平面,因?yàn)槠矫?,所以平?【考點(diǎn)】平行關(guān)系,垂直關(guān)系【名師點(diǎn)睛】本題主要考查直線與直線垂直、直線與平面平行.此類題目是立體幾何中的基本問題.解答本題,關(guān)鍵在于能利用已知的直線與直線、直線與平面、平面與平面的位置關(guān)系,通過嚴(yán)密推理,給出規(guī)范的證明.本題能較好地考查考生的空間想象能力、邏輯推理能力及轉(zhuǎn)化與化歸思想等.20、(1);(2)見解析【解析】
(1)先求出直線過定點(diǎn),設(shè)圓的一般方程,由題意列方程組,即可求圓的方程;(2)由(1)可知:求得直線的斜率,根據(jù)對(duì)稱性求得點(diǎn)坐標(biāo),由在圓外,所以點(diǎn)不能作為直角三角形的頂點(diǎn),分類討論,即可求得的值.【詳解】(1)直線的方程可化為,由解得∴定點(diǎn)的坐標(biāo)為.設(shè)圓的方程為,則圓心則依題意有解得∴圓的方程為;(2)由(1)知圓的標(biāo)準(zhǔn)方程為,∴圓心,半徑.∵是直徑的兩個(gè)端點(diǎn),∴圓心是與的中點(diǎn),∵軸上的點(diǎn)在圓外,∴是銳角,即不是直角頂點(diǎn).若是的直角頂點(diǎn),則,得;若是的直角頂點(diǎn),則,得.綜上所述,在軸上存在一點(diǎn),使為直角三角形,或.【點(diǎn)睛】本題考查圓的方程的求法,直線與圓的位置關(guān)系,考查分類討論思想,屬于中檔題.21、(1)證明過程見詳解;(2);(3)存在實(shí)數(shù),使得數(shù)列為等差數(shù)列.【解析】
(1)先由題意得到,再由,得到,即可證明結(jié)論成立;(2)先由(1)求得,推出,利用累加法,即可求出數(shù)列的通項(xiàng);(3)把數(shù)列an}、{bn}通項(xiàng)公式代入an+2bn,進(jìn)而得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年代理合同簽署注意事項(xiàng)
- 2025年商業(yè)合作形象授權(quán)代理服務(wù)協(xié)議
- 二零二五版商業(yè)地產(chǎn)買賣合同附帶抵押權(quán)登記0023篇
- 2025年高校與企業(yè)聯(lián)合培養(yǎng)協(xié)議教授合作協(xié)議9篇
- 二零二五年度出口合同模板(含出口貨物倉儲(chǔ)與物流服務(wù))4篇
- 2025年度裝配式建筑構(gòu)件生產(chǎn)與施工合同范本4篇
- 2025版水電安裝工程新能源并網(wǎng)服務(wù)合同集錦3篇
- 二零二五版零擔(dān)運(yùn)輸合同物流數(shù)據(jù)安全保護(hù)合同4篇
- 二零二五版路演車輛租賃與后勤保障合同4篇
- 二零二五年度家族財(cái)產(chǎn)管理及子女成長(zhǎng)支持協(xié)議
- (一模)臨汾市2025年高考考前適應(yīng)性訓(xùn)練考試(一)語文試卷(含答案)
- 2024-2025學(xué)年滬科版數(shù)學(xué)七年級(jí)上冊(cè)期末綜合測(cè)試卷(一)(含答案)
- 2023年廣東省公務(wù)員錄用考試《行測(cè)》真題及答案解析
- 2024年公證遺產(chǎn)繼承分配協(xié)議書模板
- 燃?xì)饨?jīng)營(yíng)安全重大隱患判定標(biāo)準(zhǔn)課件
- 深圳小學(xué)英語單詞表(中英文)
- 護(hù)理質(zhì)量反饋內(nèi)容
- 抖音搜索用戶分析報(bào)告
- 鉆孔灌注樁技術(shù)規(guī)范
- 2023-2024學(xué)年北師大版必修二unit 5 humans and nature lesson 3 Race to the pole 教學(xué)設(shè)計(jì)
- 供貨進(jìn)度計(jì)劃
評(píng)論
0/150
提交評(píng)論