2025屆江功省睢寧縣第一中學北校高一下數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2025屆江功省睢寧縣第一中學北校高一下數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2025屆江功省睢寧縣第一中學北校高一下數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2025屆江功省睢寧縣第一中學北校高一下數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2025屆江功省睢寧縣第一中學北校高一下數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆江功省睢寧縣第一中學北校高一下數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,角所對的邊分別為,若的面積,則()A. B. C. D.2.設集合,,則()A. B. C. D.3.若、為異面直線,直線,則與的位置關系是()A.相交 B.異面 C.平行 D.異面或相交4.如圖,為正方體,下面結論錯誤的是()A.平面B.C.平面D.異面直線與所成的角為5.某廠家生產(chǎn)甲、乙、丙三種不同類型的飲品?產(chǎn)量之比為2:3:4.為檢驗該廠家產(chǎn)品質(zhì)量,用分層抽樣的方法抽取一個容量為72的樣本,則樣本中乙類型飲品的數(shù)量為A.16 B.24 C.32 D.486.在直角坐標系中,已知點,則的面積為()A. B.4 C. D.87.設,則的大小關系為()A. B. C. D.8.已知角α的終邊過點P(2sin60°,-2cos60°),則sinα的值為()A. B. C.- D.-9.已知變量與負相關,且由觀測數(shù)據(jù)算得樣本平均數(shù),則由該觀測數(shù)據(jù)算得的線性回歸方程可能是A. B.C. D.10.七巧板是古代中國勞動人民的發(fā)明,到了明代基本定型.清陸以湉在《冷廬雜識》中寫道:近又有七巧圖,其式五,其數(shù)七,其變化之式多至千余.如圖,在七巧板拼成的正方形內(nèi)任取一點,則該點取自圖中陰影部分的概率是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,均為單位向量,它們的夾角為,那么__________.12.已知,則___________.13.在等比數(shù)列中,,的值為______.14.圓x2+y2-4=0與圓x2+y2-4x+4y-12=0的公共弦的長為___.15.如圖,在中,,,,則________.16.若正實數(shù),滿足,則的最小值是________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,四棱錐中,平面,底面是平行四邊形,若,.(Ⅰ)求證:平面平面;(Ⅱ)求棱與平面所成角的正弦值.18.若不等式的解集是.(1)求的值;(2)當為何值時,的解集為.19.如圖,在四棱錐中,平面,底面是棱長為的菱形,,,是的中點.(1)求證://平面;(2)求直線與平面所成角的正切值.20.已知α為銳角,且tanα=(I)求tanα+(II)求5sin21.已知中,,,點D在AB上,,并且.(1)求BC的長度;(2)若點E為AB中點,求CE的長度.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

利用面積公式及可求,再利用同角的三角函數(shù)的基本關系式可求,最后利用余弦定理可求的值.【詳解】因為,故,所以,因為,故,又,由余弦定理可得,故.故選B.【點睛】三角形中共有七個幾何量(三邊三角以及外接圓的半徑),一般地,知道其中的三個量(除三個角外),可以求得其余的四個量.(1)如果知道三邊或兩邊及其夾角,用余弦定理;(2)如果知道兩邊即一邊所對的角,用正弦定理(也可以用余弦定理求第三條邊);(3)如果知道兩角及一邊,用正弦定理.2、C【解析】分析:利用一元二次不等式的解法化簡集合,由子集的定義可得結果.詳解:,,,故選C.點睛:本題主要考查解一元二次不等式,集合的子集的定義,屬于容易題,在解題過程中要注意考慮端點是否可以取到,這是一個易錯點,同時將不等式與集合融合,體現(xiàn)了知識點之間的交匯.3、D【解析】解:因為為異面直線,直線,則與的位置關系是異面或相交,選D4、D【解析】

在正方體中與

平行,因此有與平面

平行,A正確;在平面

內(nèi)的射影垂直于,因此有,B正確;與B同理有與

垂直,從而

平面

,C正確;由知與所成角為45°,D錯.故選D.5、B【解析】

根據(jù)分層抽樣各層在總體的比例與在樣本的比例相同求解.【詳解】因為分層抽樣總體和各層的抽樣比例相同,所以各層在總體的比例與在樣本的比例相同,所以樣本中乙類型飲品的數(shù)量為.故選B.【點睛】本題考查分層抽樣,依據(jù)分層抽樣總體和各層的抽樣比例相同.6、B【解析】

求出直線AB的方程及點C到直線AB的距離d,再求出,代入即可得解.【詳解】,即,點到直線的距離,,的面積為:.故選:B【點睛】本題考查直線的點斜式方程,點到直線的距離與兩點之間的距離公式,屬于基礎題.7、B【解析】

不難發(fā)現(xiàn)從而可得【詳解】,故選B.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較數(shù)大小.8、D【解析】

利用特殊角的三角函數(shù)值得出點的坐標,然后利用正弦的定義,求得的值.【詳解】依題意可知,所以,故選D.【點睛】本小題主要考查三角函數(shù)的定義,考查特殊角的三角函數(shù)值,屬于基礎題.9、D【解析】

由于變量與負相關,得回歸直線的斜率為負數(shù),再由回歸直線經(jīng)過樣本點的中心,得到可能的回歸直線方程.【詳解】由于變量與負相關,排除A,B,把代入直線得:成立,所以在直線上,故選D.【點睛】本題考查回歸直線斜率的正負、回歸直線過樣本點中心,考查基本數(shù)據(jù)處理能力.10、B【解析】

設陰影部分正方形的邊長為,計算出七巧板所在正方形的邊長,并計算出兩個正方形的面積,利用幾何概型概率公式可計算出所求事件的概率.【詳解】如圖所示,設陰影部分正方形的邊長為,則七巧板所在正方形的邊長為,由幾何概型的概率公式可知,在七巧板拼成的正方形內(nèi)任取一點,則該點取自圖中陰影部分的概率,故選:B.【點睛】本題考查幾何概型概率公式計算事件的概率,解題的關鍵在于弄清楚兩個正方形邊長之間的等量關系,考查分析問題和計算能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】分析:由,均為單位向量,它們的夾角為,求出數(shù)量積,先將平方,再開平方即可的結果.詳解:∵,故答案為.點睛:平面向量數(shù)量積公式有兩種形式,一是,二是,主要應用以下幾個方面:(1)求向量的夾角,(此時往往用坐標形式求解);(2)求投影,在上的投影是;(3)向量垂直則;(4)求向量的模(平方后需求).12、;【解析】

把已知式平方可求得,從而得,再由平方關系可求得.【詳解】∵,∴,即,∴,即,∴.故答案為.【點睛】本題考查同角三角函數(shù)關系,考查正弦的二倍角公式,在用平方關系求值時要注意結果可能有正負,因此要判斷是否只取一個值.13、【解析】

由等比中項,結合得,化簡即可.【詳解】由等比中項得,得,設等比數(shù)列的公比為,化簡.故答案為:4【點睛】本題考查了等比中項的性質(zhì),通項公式的應用,屬于基礎題.14、【解析】

兩圓方程相減求出公共弦所在直線的解析式,求出第一個圓心到直線的距離,再由第一個圓的半徑,利用勾股定理及垂徑定理即可求出公共弦長.【詳解】圓與圓的方程相減得:,由圓的圓心,半徑r為2,且圓心到直線的距離,則公共弦長為.故答案為.【點睛】此題考查了直線與圓相交的性質(zhì),求出公共弦所在的直線方程是解本題的關鍵.15、【解析】

先將轉化為和為基底的兩組向量,然后通過數(shù)量積即可得到答案.【詳解】,.【點睛】本題主要考查向量的基本運算,數(shù)量積運算,意在考查學生的分析能力和計算能力.16、【解析】

將配湊成,由此化簡的表達式,并利用基本不等式求得最小值.【詳解】由得,所以.當且僅當,即時等號成立.故填:.【點睛】本小題主要考查利用基本不等式求和式的最小值,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見證明;(Ⅱ)【解析】

(Ⅰ)先證明平面,再證明平面平面.(Ⅱ)以為原點,所在直線為軸,所在直線為軸,所在直線為軸,建立如圖空間直角坐標系,利用向量法求棱與平面所成角的正弦值.【詳解】解:(Ⅰ)∵平面,∴,∵,,,∴,∴,∴平面,又∵平面,∴平面平面.(Ⅱ)以為原點,所在直線為軸,所在直線為軸,所在直線為軸,建立如圖空間直角坐標系,則,,,,于是,,,設平面的一個法向量為,則,解得,∴,設與平面所成角為,則.【點睛】本題主要考查空間垂直關系的證明,考查線面角的求法,意在考查學生對這些知識的理解掌握水平和分析推理能力.18、(1);(2)【解析】

(1)由不等式的解集是,利用根與系數(shù)關系列式求出的值;(2)代入得值后,由不等式對應的方程的判別式小于等于0,列式求解的取值范圍.【詳解】(1)由題意知,1﹣<0,且﹣1和1是方程的兩根,∴,解得=1.(2),即為,若此不等式的解集為,則2﹣4×1×1≤0,∴﹣6≤≤6,所以的范圍是【點睛】本題考查了一元二次不等式的解法,考查了一元二次方程的根與系數(shù)的關系,屬于基礎題.19、(1)見解析(2)【解析】

(1)連接交于點,則為的中點,由中位線的性質(zhì)得出,再利用直線與平面平行的判定定理得出平面;(2)取的中點,連接,由中位線的性質(zhì)得到,且,可得出平面,于此得出直線與平面所成的角為,然后在中計算即可.【詳解】(1)連接,交于點,連接,由底面是菱形,知是的中點,又是的中點,∴.又∵平面,平面,∴平面;(2)取中點,連接,∵分別為的中點,∴,∵平面,∴平面,∴直線與平面所成角為,∵,,∴.【點睛】本題考查直線與平面平行的判定,考查直線與平面所成角的計算,在計算直線與平面所成角時,要注意過點作平面的垂線,構造出直線與平面所成的角,再選擇合適的直角三角形求解,考查邏輯推理能力與計算能力,屬于中等題.20、(I)tanα+π【解析】試題分析:(1)根據(jù)兩角和差的正切公式,將式子展開,根據(jù)題干中的條件代入即可;(2)這是其次式的考查,上下同除以cosα(I)tanα+(II)因為tanα=1521、(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論