版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
陜西省銅川一中2025屆數(shù)學(xué)高一下期末調(diào)研模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在中,,且,若,則()A.2 B.1 C. D.2.已知,其中,則()A. B. C. D.3.在中,角,,的對(duì)邊分別為,,,若,,則()A. B. C. D.4.已知,是兩個(gè)單位向量,且?jiàn)A角為,則與數(shù)量積的最小值為()A. B. C. D.5.直線與圓的位置關(guān)系是()A.相切 B.相離C.相交但不過(guò)圓心 D.相交且過(guò)圓心6.是邊AB上的中點(diǎn),記,,則向量()A. B.C. D.7.計(jì)算的值等于()A. B. C. D.8.已知平面向量的夾角為,且,則()A. B. C. D.9.等比數(shù)列的各項(xiàng)均為正數(shù),且,則()A.3 B.6 C.9 D.8110.如圖所示,在正四棱錐中,分別是,,的中點(diǎn),動(dòng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),下列結(jié)論不恒成立的是().A.與異面 B.面 C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.方程,的解集是__________.12.若兩個(gè)正實(shí)數(shù)滿足,且不等式有解,則實(shí)數(shù)的取值范圍是____________.13.中,若,,則角C的取值范圍是________.14.設(shè),向量,,若,則__________.15.若正實(shí)數(shù)滿足,則的最大值為__________.16.已知向量,,若,則__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.如圖,已知矩形中,,,M是以為直徑的半圓周上的任意一點(diǎn)(與C,D均不重合),且平面平面.(1)求證:平面平面;(2)當(dāng)四棱錐的體積最大時(shí),求與所成的角18.已知向量(),向量,,且.(Ⅰ)求向量;(Ⅱ)若,,求.19.從某學(xué)校高三年級(jí)共800名男生中隨機(jī)抽取50名學(xué)生作為樣本測(cè)量身高.測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于155cm和195cm之間,將測(cè)量結(jié)果按如下方式分成八組:第一組;第二組;…;第八組.下圖是按上述分組方法得到的頻率分布直方圖的一部分.已知第一組與第八組人數(shù)相同,第六組與第八組人數(shù)之和為第七組的兩倍.(1)估計(jì)這所學(xué)校高三年級(jí)全體男生身高在180cm以上(含180cm)的人數(shù);(2)求第六組和第七組的頻率并補(bǔ)充完整頻率分布直方圖.20.已知圓C:內(nèi)有一點(diǎn)P(2,2),過(guò)點(diǎn)P作直線l交圓C于A、B兩點(diǎn).(1)當(dāng)弦AB被點(diǎn)P平分時(shí),寫出直線l的方程;(2)當(dāng)直線l的傾斜角為45o時(shí),求弦AB的長(zhǎng).21.已知等比數(shù)列的公比,且,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),是數(shù)列的前項(xiàng)和,對(duì)任意正整數(shù)不等式恒成立,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
取的中點(diǎn),連接,根據(jù),即可得解.【詳解】取的中點(diǎn),連接,在中,,且,所以,.故選:A【點(diǎn)睛】此題考查求向量的數(shù)量積,涉及平面向量的線性運(yùn)算,根據(jù)數(shù)量積的幾何意義求解,可以簡(jiǎn)化計(jì)算.2、D【解析】
先根據(jù)同角三角函數(shù)關(guān)系求得,再根據(jù)二倍角正切公式得結(jié)果.【詳解】因?yàn)?,且,所以,因?yàn)?,所以,因此,從而,,選D.【點(diǎn)睛】本題考查同角三角函數(shù)關(guān)系以及二倍角正切公式,考查基本分析求解能力,屬基礎(chǔ)題.3、A【解析】
由正弦定理求得sinA,利用同角三角函數(shù)的基本關(guān)系求得cosA,求出sinB=sin(120°+A)的值,可得
的值.【詳解】△ABC中,由正弦定理可得
,∴
,∴sinA=
,cosA=.
sinB=sin(120°+A)=
?+?=
,再由正弦定理可得
=
=
,
故答案為
A.【點(diǎn)睛】本題考查正弦定理,兩角和與差的正弦公式的應(yīng)用,求出sinB是解題的關(guān)鍵,屬基礎(chǔ)題.4、B【解析】
根據(jù)條件可得,,,然后進(jìn)行數(shù)量積的運(yùn)算即可.【詳解】根據(jù)條件,,,,當(dāng)時(shí),取最小值.故選:B【點(diǎn)睛】本題考查了向量數(shù)量積的運(yùn)算,同時(shí)考查了二次函數(shù)的最值,屬于基礎(chǔ)題.5、C【解析】圓心到直線的距離,據(jù)此可知直線與圓的位置關(guān)系為相交但不過(guò)圓心.本題選擇C選項(xiàng).6、C【解析】由題意得,∴.選C.7、C【解析】
由三角正弦的倍角公式計(jì)算即可.【詳解】原式.故選C【點(diǎn)睛】本題屬于基礎(chǔ)題,考查三角特殊值的正弦公式的計(jì)算.8、B【解析】
將模平方后利用數(shù)量積的定義計(jì)算其結(jié)果,然后開根號(hào)得出的值.【詳解】,因此,,故選B.【點(diǎn)睛】本題考查利用平面向量的數(shù)量積來(lái)求平面向量的模,通常利用平方法結(jié)合平面向量數(shù)量積的定義來(lái)進(jìn)行求解,考查計(jì)算能力,屬于中等題.9、A【解析】
利用等比數(shù)列性質(zhì)可求得,將所求式子利用對(duì)數(shù)運(yùn)算法則和等比數(shù)列性質(zhì)可化為,代入求得結(jié)果.【詳解】且本題正確選項(xiàng):【點(diǎn)睛】本題考查等比數(shù)列性質(zhì)的應(yīng)用,關(guān)鍵是靈活利用等比中項(xiàng)的性質(zhì),屬于基礎(chǔ)題.10、D【解析】如圖所示,連接AC、BD相交于點(diǎn)O,連接EM,EN.(1)由正四棱錐S?ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分別是BC,CD,SC的中點(diǎn),∴EM∥BD,MN∥SD,而EM∩MN=N,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故C正確.(2)由異面直線的定義可知:EP與SD是異面直線,故A正確;(3)由(1)可知:平面EMN∥平面SBD,∴EP∥平面SBD,因此B正確.(4)當(dāng)P與M重合時(shí),有∥,其他情況都是異面直線即D不正確.故選D點(diǎn)睛:本題抓住正四棱錐的特征,頂點(diǎn)在底面的投影為底面正方形的中心,即SO⊥底面ABCD,EP為動(dòng)直線,所以要證EP∥面,可先證EP所在的平面平行于面SBD,要證⊥可先證AC垂直于EP所在的平面,所以化動(dòng)為靜的處理思想在立體中常用.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
用正弦的二倍角公式展開,得到,分兩種情況討論得出結(jié)果.【詳解】解:即,即:或.①由,,得.②由,,得或.綜上可得方程,的解集是:故答案為【點(diǎn)睛】本題考查正弦函數(shù)的二倍角公式,以及特殊角的正余弦值.12、【解析】試題分析:因?yàn)椴坏仁接薪?,所以,因?yàn)?,且,所以,?dāng)且僅當(dāng),即時(shí),等號(hào)是成立的,所以,所以,即,解得或.考點(diǎn):不等式的有解問(wèn)題和基本不等式的求最值.【方法點(diǎn)晴】本題主要考查了基本不等式在最值中的應(yīng)用,不等式的有解問(wèn)題,在應(yīng)用基本不等式求解最值時(shí),呀注意“一正、二定、三相等”的判斷,運(yùn)用基本不等式解題的關(guān)鍵是尋找和為定值或是積為定值,難點(diǎn)在于如何合理正確的構(gòu)造出定值,對(duì)于不等式的有解問(wèn)題一般選用參數(shù)分離法,轉(zhuǎn)化為函數(shù)的最值或借助數(shù)形結(jié)合法求解,屬于中檔試題.13、;【解析】
由,利用正弦定理邊角互化以及兩角和的正弦公式可得,進(jìn)而可得結(jié)果.【詳解】由正弦定理可得,又,則,即,則,C是三角形的內(nèi)角,則,故答案為:.【點(diǎn)睛】本題注意考查正弦定理以及兩角和的正弦公式的應(yīng)用,屬于中檔題.正弦定理主要有三種應(yīng)用:求邊和角、邊角互化、外接圓半徑.14、【解析】從題設(shè)可得,即,應(yīng)填答案.15、【解析】
可利用基本不等式求的最大值.【詳解】因?yàn)槎际钦龜?shù),由基本不等式有,所以即,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故的最大值為.【點(diǎn)睛】應(yīng)用基本不等式求最值時(shí),需遵循“一正二定三相等”,如果原代數(shù)式中沒(méi)有積為定值或和為定值,則需要對(duì)給定的代數(shù)變形以產(chǎn)生和為定值或積為定值的局部結(jié)構(gòu).求最值時(shí)要關(guān)注取等條件的驗(yàn)證.16、1【解析】由,得.即.解得.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)【解析】
(1)證明,得到平面,得到答案.(2)過(guò)點(diǎn)M作于點(diǎn)E,當(dāng)M為半圓弧的中點(diǎn)時(shí),四棱錐的體積最大,作于F,連接,與所成的角即與所成的角,計(jì)算得到答案.【詳解】(1)為直徑,,已知平面平面,.平面,所以,又,平面,又平面,∴平面平面.(2)過(guò)點(diǎn)M作于點(diǎn)E,∵平面平面,平面,即為四棱錐的高,又底面面積為定值.所以當(dāng)M為半圓弧的中點(diǎn)時(shí),四棱錐的體積最大.作于F,連接,,與所成的角即與所成的角.在直角中,,,所以.,故與所成的角為.【點(diǎn)睛】本題考查了面面垂直,體積的最值,異面直線夾角,意在考查學(xué)生的空間想象能力和計(jì)算能力.18、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)∵,,∵,∴,即,①又,②由①②聯(lián)立方程解得,,.∴;(Ⅱ)∵,即,,∴,,又∵,,∴.19、(1)144人(2)頻率分別為0.08和0.1,見(jiàn)解析【解析】
(1)由直方圖求出前五組頻率為0.82,后三組頻率為,由此能求出這所學(xué)校高三男生身高在以上(含的人數(shù).(2)由頻率分布直方圖得第八組頻率為0.04,人數(shù)為2人,設(shè)第六組人數(shù)為,則第七組人數(shù)為,再由,得,即第六組人數(shù)為4人,第七組人數(shù)為3人,頻率分別為0.08,0.1.由此能求出結(jié)果.【詳解】(1)由圖知前5組頻率為后三組頻率為.全校高三男生身高在180cm以上的人有人.(2)如圖知第八組頻率為,人數(shù)為人.設(shè)第六組人數(shù)為m,后三組共9人.第七組人數(shù)為.,.即第六組4人,第七組3人,其頻率分別為0.08和0.1,高度分別為0.016和0.012,如圖所示.【點(diǎn)睛】本題考查頻率分布直方圖的應(yīng)用,頻率分布直方圖的性質(zhì)等基礎(chǔ)知識(shí),考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.20、(1)(2)【解析】分析:(1)為的中點(diǎn),故,所以斜率,由此求解直線方程(2)已知直線方程,利用半徑和點(diǎn)到直線的距離,求解弦長(zhǎng).詳解:(1)P為AB中點(diǎn)C(1,0),P(2,2)(2)的方程為由已知,又直線過(guò)點(diǎn)P(2,2)直線的方程為即x-y=0C到直線l的距離,點(diǎn)睛:利用圓與直線的幾何性質(zhì)解圓有關(guān)的問(wèn)題常見(jiàn)解法,圓心到直線的距離、半徑、弦長(zhǎng)之間的關(guān)系為.21、(1);(2)【解析】
(1)由,,根據(jù)等比數(shù)列的通項(xiàng)公式可解得,,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年農(nóng)村地房產(chǎn)改建流轉(zhuǎn)改建租賃合同
- 2025年教育機(jī)構(gòu)藝術(shù)體操俱樂(lè)部勞動(dòng)合同范本3篇
- 宜賓酒王2025年度控量保價(jià)銷售風(fēng)險(xiǎn)評(píng)估合同3篇
- 2025年醫(yī)療監(jiān)督機(jī)構(gòu)合作協(xié)議
- 2025年度煤礦基建工程安全施工事故預(yù)防合同3篇
- 二零二五年杭州環(huán)??萍计髽I(yè)股權(quán)合資與污染治理合同3篇
- 工業(yè)安全意識(shí)提升課程設(shè)計(jì)的重要意義
- 2025年度煤炭資源勘探與開采許可合同4篇
- 2025版鋁合金門窗行業(yè)知識(shí)產(chǎn)權(quán)保護(hù)合同4篇
- 二零二五年度園林景觀綠化工程分包合同示范文本4篇
- 2025年河南鶴壁市政務(wù)服務(wù)和大數(shù)據(jù)管理局招聘12345市長(zhǎng)熱線人員10人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 建設(shè)項(xiàng)目安全設(shè)施施工監(jiān)理情況報(bào)告
- 春節(jié)期間安全施工措施
- 2025年大唐集團(tuán)招聘筆試參考題庫(kù)含答案解析
- 建筑工地春節(jié)期間安全保障措施
- 2025山東水發(fā)集團(tuán)限公司招聘管理單位筆試遴選500模擬題附帶答案詳解
- 2024-2030年中國(guó)建筑玻璃行業(yè)市場(chǎng)深度調(diào)研及競(jìng)爭(zhēng)格局與投資價(jià)值預(yù)測(cè)研究報(bào)告
- 泌尿:膀胱腫瘤病人的護(hù)理查房王雪-課件
- 企業(yè)短期中期長(zhǎng)期規(guī)劃
- 中華民族共同體概論講稿專家版《中華民族共同體概論》大講堂之第一講:中華民族共同體基礎(chǔ)理論
- 《商務(wù)溝通-策略、方法與案例》課件 第一章 商務(wù)溝通概論
評(píng)論
0/150
提交評(píng)論