版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
安徽省滁州市英華2025屆高一下數(shù)學(xué)期末考試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B.C. D.2.已知向量,滿足:則A. B. C. D.3.某幾何體的三視圖如圖所示,其外接球體積為()A. B. C. D.4.為了治療某種疾病,研制了一種新藥,為確定該藥的療效,生物實驗室有只小動物,其中有3只注射過該新藥,若從這只小動物中隨機(jī)取出只檢測,則恰有只注射過該新藥的概率為()A. B. C. D.5.已知函數(shù)是奇函數(shù),將的圖像上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),所得圖像對應(yīng)的函數(shù)為.若的最小正周期為,且,則()A. B. C. D.6.在正方體中,分別是線段的中點,則下列判斷錯誤的是()A.與垂直 B.與垂直C.與平行 D.與平行7.下列敘述中,不能稱為算法的是()A.植樹需要運苗、挖坑、栽苗、澆水這些步驟B.按順序進(jìn)行下列運算:1+1=2,2+1=3,3+1=4,…,99+1=100C.從濟(jì)南到北京旅游,先坐火車,再坐飛機(jī)抵達(dá)D.3x>x+18.如圖,在矩形中,,,點滿足,記,,,則的大小關(guān)系為()A. B.C. D.9.設(shè)首項為,公比為的等比數(shù)列的前項和為,則()A. B. C. D.10.記等差數(shù)列的前n項和為.若,則()A.7 B.8 C.9 D.10二、填空題:本大題共6小題,每小題5分,共30分。11.已知是邊長為的等邊三角形,為邊上(含端點)的動點,則的取值范圍是_______.12.住在同一城市的甲、乙兩位合伙人,約定在當(dāng)天下午4.00-5:00間在某個咖啡館相見商談合作事宜,他們約好當(dāng)其中一人先到后最多等對方10分鐘,若等不到則可以離去,則這兩人能相見的概率為__________.13.已知直線與圓交于兩點,若,則____.14.如圖是一個算法的流程圖,則輸出的的值是________.15.若不等式對于任意都成立,則實數(shù)的取值范圍是____________.16.已知等腰三角形底角的余弦值等于,則這個三角形頂角的正弦值為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知向量,的夾角為120°,且||=2,||=3,設(shè)32,2.(Ⅰ)若⊥,求實數(shù)k的值;(Ⅱ)當(dāng)k=0時,求與的夾角θ的大?。?8.已知、、是的內(nèi)角,且,.(1)若,求的外接圓的面積:(2)若,且為鈍角三角形,求正實數(shù)的取值范圍.19.已知直線與圓相交于,兩點.(1)若,求;(2)在軸上是否存在點,使得當(dāng)變化時,總有直線、的斜率之和為0,若存在,求出點的坐標(biāo):若不存在,說明理由.20.在平面直角坐標(biāo)系中,已知向量,.(1)求證:且;(2)設(shè)向量,,且,求實數(shù)的值.21.已知函數(shù)的最小正周期為,將的圖象向右平移個單位長度,再向上平移個單位長度得到函數(shù)的圖象.(1)求函數(shù)的解析式;(2)在中,角所對的邊分別為,若,且,求周長的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
先通過三視圖找到幾何體原圖,再求幾何體的體積得解.【詳解】由題得該幾何體是一個邊長為4的正方體挖去一個圓錐(圓錐底面在正方體上表面上,圓錐頂部朝下),所以幾何體體積為.故選:C【點睛】本題主要考查三視圖還原幾何體原圖,考查組合體體積的計算,意在考查學(xué)生對這些知識的理解掌握水平.2、D【解析】
利用向量的數(shù)量積運算及向量的模運算即可求出.【詳解】∵||=3,||=2,|+|=4,∴|+|2=||2+||2+2=16,∴2=3,∴|﹣|2=||2+||2﹣2=9+4﹣3=10,∴|﹣|=,故選D.【點睛】本題考查了向量的數(shù)量積運算和向量模的計算,屬于基礎(chǔ)題.3、D【解析】
易得該幾何體為三棱錐,再根據(jù)三視圖在長方體中畫出該三棱錐,再根據(jù)此三棱錐與長方體的外接球相同求解即可.【詳解】在長方體中畫出該幾何體,易得為三棱錐,且三棱錐與該長方體外接球相同.又長方體體對角線等于外接球直徑,故.故外接球體積故選:D【點睛】本題主要考查了三視圖還原幾何體以及求外接球體積的問題,屬于基礎(chǔ)題.4、B【解析】
將只注射過新藥和未注射過新藥的小動物分別編號,列出所有的基本事件,并確定事件“恰有只注射過該新藥”所包含的基本事件的數(shù)目,然后利用古典概型的概率計算公式可該事件的概率.【詳解】將只注射過新藥的小動物編號為、、,只未注射新藥的小動物編號為、、,記事件恰有只注射過該新藥,所有的基本事件有:、、、、、、、、、、、、、、,共個,其中事件所包含的基本事件個數(shù)為個,由古典概型的概率公式得,故選B.【點睛】本題考查古典概型的概率公式,列舉基本事件是解題的關(guān)鍵,一般在列舉基本事件有枚舉法和數(shù)狀圖法,列舉時應(yīng)注意不重不漏,考查計算能力,屬于中等題.5、C【解析】
只需根據(jù)函數(shù)性質(zhì)逐步得出值即可。【詳解】因為為奇函數(shù),∴;又,,又∴,故選C。【點睛】本題考查函數(shù)的性質(zhì)和函數(shù)的求值問題,解題關(guān)鍵是求出函數(shù)。6、D【解析】
利用數(shù)形結(jié)合,逐一判斷,可得結(jié)果.【詳解】如圖由分別是線段的中點所以//A選項正確,因為,所以B選項正確,由,所以C選項正確D選項錯誤,由//,而與相交,所以可知,異面故選:D【點睛】本題主要考查空間中直線與直線的位置關(guān)系,屬基礎(chǔ)題.7、D【解析】
利用算法的定義來分析判斷各選項的正確與否,即可求解,得到答案.【詳解】由算法的定義可知,算法、程序是完成一件事情的可操作的步驟:可得A、B、C為算法,D沒有明確的規(guī)則和步驟,所以不是算法,故選D.【點睛】本題主要考查了算法的概念,其中解答的關(guān)鍵是理解算法的概念,由概念作出正確的判斷,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.8、C【解析】
可建立合適坐標(biāo)系,表示出a,b,c的大小,運用作差法比較大小.【詳解】以為圓心,以所在直線為軸、軸建立坐標(biāo)系,則,,,設(shè),則,,,,,,,,故選C.【點睛】本題主要考查學(xué)生的建模能力,意在考查學(xué)生的理解能力及分析能力,難度中等.9、D【解析】Sn====3-2an.10、D【解析】
由可得值,可得可得答案.【詳解】解:由,可得,所以,從而,故選D.【點睛】本題主要考察等差數(shù)列的性質(zhì)及等差數(shù)列前n項的和,由得出的值是解題的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
取的中點為坐標(biāo)原點,、所在直線分別為軸、軸建立平面直角坐標(biāo)系,設(shè)點的坐標(biāo)為,其中,利用數(shù)量積的坐標(biāo)運算將轉(zhuǎn)化為有關(guān)的一次函數(shù)的值域問題,可得出的取值范圍.【詳解】如下圖所示:取的中點為坐標(biāo)原點,、所在直線分別為軸、軸建立平面直角坐標(biāo)系,則點、、,設(shè)點,其中,,,,因此,的取值范圍是,故答案為.【點睛】本題考查平面向量數(shù)量積的取值范圍,可以利用基底向量法以及坐標(biāo)法求解,在建系時應(yīng)充分利用對稱性來建系,另外就是注意將動點所在的直線變?yōu)樽鴺?biāo)軸,可簡化運算,考查運算求解能力,屬于中等題.12、【解析】
將甲、乙到達(dá)時間設(shè)為(以為0時刻,單位為分鐘).則相見需要滿足:畫出圖像,根據(jù)幾何概型公式得到答案.【詳解】根據(jù)題意:將甲、乙到達(dá)時間設(shè)為(以為0時刻,單位為分鐘)則相見需要滿足:畫出圖像:根據(jù)幾何概型公式:【點睛】本題考查了幾何概型的應(yīng)用,意在考查學(xué)生解決問題的能力.13、【解析】
根據(jù)點到直線距離公式與圓的垂徑定理求解.【詳解】圓的圓心為,半徑為,圓心到直線的距離:,由得,解得.【點睛】本題考查直線與圓的應(yīng)用.此題也可聯(lián)立圓與直線方程,消元后用弦長公式求解.14、【解析】由程序框圖,得運行過程如下:;,結(jié)束循環(huán),即輸出的的值是7.15、【解析】
利用換元法令(),將不等式左邊構(gòu)造成一次函數(shù),根據(jù)一次函數(shù)的性質(zhì)列不等式組,解不等式組求得的取值范圍.【詳解】令,,則.由已知得,不等式對于任意都成立.又令,則,即,解得.所以所求實數(shù)的取值范圍是.故答案為:【點睛】本小題主要考查不等式恒成立問題的求解策略,考查三角函數(shù)的取值范圍,考查一次函數(shù)的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.16、【解析】
已知等腰三角形可知為銳角,利用三角形內(nèi)角和為,建立底角和頂角之間的關(guān)系,再求解三角函數(shù)值.【詳解】設(shè)此三角形的底角為,頂角為,易知為銳角,則,,所以.【點睛】給值求值的關(guān)鍵是找準(zhǔn)角與角之間的關(guān)系,再利用已知的函數(shù)求解未知的函數(shù)值.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用⊥,結(jié)合向量的數(shù)量積的運算公式,得到關(guān)于的方程,即可求解;(Ⅱ)當(dāng)時,利用向量的數(shù)量積的運算公式,以及向量的夾角公式,即可求解.【詳解】(Ⅰ)由題意,向量,的夾角為120°,且||=2,||=3,所以,,,又由.若⊥,可得,解得k.(Ⅱ)當(dāng)k=0時,,則.因為,由向量的夾角公式,可得,又因為0≤θ≤π,∴,所以與的夾角θ的大小為.【點睛】本題主要考查了向量的數(shù)量積的運算,以及向量的夾角公式的應(yīng)用,其中解答中熟記向量的運算公式,準(zhǔn)確運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.18、(1)(2)【解析】
(1)根據(jù)同角三角函數(shù)基本關(guān)系先求得,再由正弦定理求得即可;(2)因大小不能確定,故鈍角不能確定,結(jié)合三角形三邊關(guān)系和余弦定理特點即可判斷【詳解】(1)由,又,即,故外接圓的面積為:(2),,,根據(jù)三邊關(guān)系有,當(dāng)為鈍角時,可得,即,解得,故;當(dāng)為鈍角時,可得,即,解得,故;綜上可得的范圍是【點睛】本題考查正弦定理的應(yīng)用,余弦定理和三角形中形狀的判斷的關(guān)系,屬于中檔題19、(1);(2)存在.【解析】
(1)由題得到的距離為,即得,解方程即得解;(2)設(shè),,存在點滿足題意,即,把韋達(dá)定理代入方程化簡即得解.【詳解】(1)因為圓,所以圓心坐標(biāo)為,半徑為2,因為,所以到的距離為,由點到直線的距離公式可得:,解得.(2)設(shè),,則得,因為,所以,,設(shè)存在點滿足題意,即,所以,因為,所以,所以,解得.所以存在點符合題意.【點睛】本題主要考查直線和圓的位置關(guān)系,考查直線和圓的探究性問題的解答,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力,屬于中檔題.20、(1)證明見解析(2)【解析】
(1)根據(jù)向量的坐標(biāo)求出向量模的方法以及向量的數(shù)量積即可求解.(2)根據(jù)向量垂直,可得數(shù)量積等于,進(jìn)而解方程即可求解.【詳解】(1)證明:,,所以,因為,所以;(2)因為,所以,由(1)得:所以,解得.【點睛】本題考
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年枸杞采摘采摘技術(shù)與設(shè)備租賃合同3篇
- 二零二五年度網(wǎng)絡(luò)安全人才培養(yǎng)與輸送合同2篇
- 二零二五版果園果樹種植與農(nóng)業(yè)技術(shù)培訓(xùn)服務(wù)合同樣本3篇
- 二零二五年度采砂廠承包綜合效益評估合同范本3篇
- 二零二五版智能化住宅項目施工及造價管理合同3篇
- 二零二五年度環(huán)保污水處理設(shè)備采購補(bǔ)充合同范本2篇
- 2025年新型城鎮(zhèn)化項目場地租賃與開發(fā)建設(shè)合同范本2篇
- 二零二五版環(huán)保設(shè)施投資合作合同3篇
- 二零二五版交通事故車輛損失賠償合同3篇
- 二零二五版特種車輛租賃及操作培訓(xùn)合同3篇
- 寒潮雨雪應(yīng)急預(yù)案范文(2篇)
- DB33T 2570-2023 營商環(huán)境無感監(jiān)測規(guī)范 指標(biāo)體系
- 上海市2024年中考英語試題及答案
- 房屋市政工程生產(chǎn)安全重大事故隱患判定標(biāo)準(zhǔn)(2024版)宣傳海報
- 垃圾車駕駛員聘用合同
- 2025年道路運輸企業(yè)客運駕駛員安全教育培訓(xùn)計劃
- 南京工業(yè)大學(xué)浦江學(xué)院《線性代數(shù)(理工)》2022-2023學(xué)年第一學(xué)期期末試卷
- 2024版機(jī)床維護(hù)保養(yǎng)服務(wù)合同3篇
- 《論拒不執(zhí)行判決、裁定罪“執(zhí)行能力”之認(rèn)定》
- 工程融資分紅合同范例
- 2024國家安全員資格考試題庫加解析答案
評論
0/150
提交評論