福建省羅源第二中學(xué)、連江二中2025屆高一下數(shù)學(xué)期末考試試題含解析_第1頁(yè)
福建省羅源第二中學(xué)、連江二中2025屆高一下數(shù)學(xué)期末考試試題含解析_第2頁(yè)
福建省羅源第二中學(xué)、連江二中2025屆高一下數(shù)學(xué)期末考試試題含解析_第3頁(yè)
福建省羅源第二中學(xué)、連江二中2025屆高一下數(shù)學(xué)期末考試試題含解析_第4頁(yè)
福建省羅源第二中學(xué)、連江二中2025屆高一下數(shù)學(xué)期末考試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

福建省羅源第二中學(xué)、連江二中2025屆高一下數(shù)學(xué)期末考試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知分別為內(nèi)角的對(duì)邊,若,b=則=()A. B. C. D.2.在空間直角坐標(biāo)系中,點(diǎn)P(3,4,5)關(guān)于平面的對(duì)稱點(diǎn)的坐標(biāo)為()A.(?3,4,5) B.(?3,?4,5)C.(3,?4,?5) D.(?3,4,?5)3.函數(shù)的對(duì)稱中心是()A. B. C. D.4.在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,若acosA=bcosB,則△ABC的形狀為()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形5.函數(shù)的零點(diǎn)所在的區(qū)間是().A. B. C. D.6.已知各項(xiàng)均為正數(shù)的等比數(shù)列,若,則的值為()A.-4 B.4 C. D.07.在△中,若,則△為()A.等腰三角形 B.直角三角形C.等腰或直角三角形 D.等腰直角三角形8.一游客在處望見(jiàn)在正北方向有一塔,在北偏西方向的處有一寺廟,此游客騎車(chē)向西行后到達(dá)處,這時(shí)塔和寺廟分別在北偏東和北偏西,則塔與寺廟的距離為()A. B. C. D.9.不等式組所表示的平面區(qū)域的面積為()A.1 B. C. D.10.如圖,某船在A處看見(jiàn)燈塔P在南偏東方向,后來(lái)船沿南偏東的方向航行30km后,到達(dá)B處,看見(jiàn)燈塔P在船的西偏北方向,則這時(shí)船與燈塔的距離是:A.10kmB.20kmC.D.二、填空題:本大題共6小題,每小題5分,共30分。11.等差數(shù)列中,,則其前12項(xiàng)之和的值為_(kāi)_____12.已知直線與圓相交于,兩點(diǎn),則=______.13.化簡(jiǎn):______.(要求將結(jié)果寫(xiě)成最簡(jiǎn)形式)14.直線與圓交于兩點(diǎn),若為等邊三角形,則______.15.有一個(gè)底面半徑為2,高為2的圓柱,點(diǎn),分別為這個(gè)圓柱上底面和下底面的圓心,在這個(gè)圓柱內(nèi)隨機(jī)取一點(diǎn)P,則點(diǎn)P到點(diǎn)或的距離不大于1的概率是________.16.如圖,將一個(gè)長(zhǎng)方體用過(guò)相鄰三條棱的中點(diǎn)的平面截出一個(gè)棱錐,則該棱錐的體積與剩下的幾何體體積的比為_(kāi)_______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知數(shù)列滿足:.(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng);(2)求數(shù)列的前項(xiàng)和.18.在中,,點(diǎn)D在邊AB上,,且.(1)若的面積為,求CD;(2)設(shè),若,求證:.19.已知中,角的對(duì)邊分別為.(1)若依次成等差數(shù)列,且公差為2,求的值;(2)若的外接圓面積為,求周長(zhǎng)的最大值.20.已知函數(shù),其中.解關(guān)于x的不等式;求a的取值范圍,使在區(qū)間上是單調(diào)減函數(shù).21.已知圓心為的圓過(guò)點(diǎn),且與直線相切于點(diǎn)。(1)求圓的方程;(2)已知點(diǎn),且對(duì)于圓上任一點(diǎn),線段上存在異于點(diǎn)的一點(diǎn),使得(為常數(shù)),試判斷使的面積等于4的點(diǎn)有幾個(gè),并說(shuō)明理由。

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

由已知利用正弦定理可求的值,根據(jù)余弦定理可得,解方程可得的值.【詳解】,,,由正弦定理,可得:,由余弦定理,可得:,解得:,負(fù)值舍去.故選.【點(diǎn)睛】本題主要考查了正弦定理,余弦定理在解三角形中的應(yīng)用,考查了方程思想,屬于基礎(chǔ)題.2、A【解析】

由關(guān)于平面對(duì)稱的點(diǎn)的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)和豎坐標(biāo)相等,即可得解.【詳解】關(guān)于平面對(duì)稱的點(diǎn)的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)和豎坐標(biāo)相等,所以點(diǎn)P(3,4,5)關(guān)于平面的對(duì)稱點(diǎn)的坐標(biāo)為(?3,4,5).故選A.【點(diǎn)睛】本題主要考查了空間點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)求法,屬于基礎(chǔ)題.3、C【解析】,設(shè)是奇函數(shù),其圖象關(guān)于原點(diǎn)對(duì)稱,而函數(shù)的圖象可由的圖象向右平移一個(gè)單位,向下平移兩個(gè)單位得到,所以函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,故選C.4、C【解析】

利用正弦定理由acosA=bcosB,可得sinAcosA=sinBcosB,再利用二倍角的正弦即可判斷△ABC的形狀.【詳解】在△ABC中,∵acosA=bcosB,∴由正弦定理得:sinAcosA=sinBcosB,即sin2A=sin2B,∴2A=2B或2A+2B=π,∴A=B或A+B=,∴△ABC的形狀為等腰三角形或直角三角形.故選C.考點(diǎn):三角形的形狀判斷.5、C【解析】

因?yàn)樵瘮?shù)是增函數(shù)且連續(xù),,所以根據(jù)函數(shù)零點(diǎn)存在定理得到零點(diǎn)在區(qū)間上,故選C.6、B【解析】

根據(jù)等比中項(xiàng)可得,再根據(jù),即可求出結(jié)果.【詳解】由等比中項(xiàng)可知,,又,所以.故選:B.【點(diǎn)睛】本題主要考查了等比中項(xiàng)的性質(zhì),屬于基礎(chǔ)題.7、A【解析】

利用正弦定理化簡(jiǎn)已知條件,得到,由此得到,進(jìn)而判斷出正確選項(xiàng).【詳解】由正弦定理得,所以,所以,故三角形為等腰三角形,故選A.【點(diǎn)睛】本小題主要考查利用正弦定理判斷三角形的形狀,考查同角三角函數(shù)的基本關(guān)系式,屬于基礎(chǔ)題.8、C【解析】

先根據(jù)題干描述,畫(huà)出ABCD的相對(duì)位置,再解三角形.【詳解】如圖先求出,的長(zhǎng),然后在中利用余弦定理可求解.在中,,可得.在中,,,,∴,∴.在中,,∴.故選C.【點(diǎn)睛】本題考查正余弦定理解決實(shí)際問(wèn)題中的距離問(wèn)題,正確畫(huà)出其相對(duì)位置是關(guān)鍵,屬于中檔題.9、D【解析】

畫(huà)出可行域,根據(jù)邊界點(diǎn)的坐標(biāo)計(jì)算出平面區(qū)域的面積.【詳解】畫(huà)出可行域如下圖所示,其中,故平面區(qū)域?yàn)槿切危胰切蚊娣e為,故選D.【點(diǎn)睛】本小題主要考查線性規(guī)劃可行域面積的求法,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.10、C【解析】

在中,利用正弦定理求出得長(zhǎng),即為這時(shí)船與燈塔的距離,即可得到答案.【詳解】由題意,可得,即,在中,利用正弦定理得,即這時(shí)船與燈塔的距離是,故選C.【點(diǎn)睛】本題主要考查了正弦定理,等腰三角形的判定與性質(zhì),以及特殊角的三角函數(shù)值的應(yīng)用,其中熟練掌握正弦定理是解答本題的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用等差數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式直接求解.【詳解】∵等差數(shù)列{an}中,a3+a10=25,∴其前12項(xiàng)之和S126(a3+a10)=6×25=1.故答案為:1.【點(diǎn)睛】本題考查等差數(shù)列的前n項(xiàng)和的公式,考查等差數(shù)列的性質(zhì)的應(yīng)用,考查運(yùn)算求解能力,是基礎(chǔ)題.12、.【解析】

將圓的方程化為標(biāo)準(zhǔn)方程,由點(diǎn)到直線距離公式求得弦心距,再結(jié)合垂徑定理即可求得.【詳解】圓,變形可得所以圓心坐標(biāo)為,半徑直線,變形可得由點(diǎn)到直線距離公式可得弦心距為由垂徑定理可知故答案為:【點(diǎn)睛】本題考查了直線與圓相交時(shí)的弦長(zhǎng)求法,點(diǎn)到直線距離公式的應(yīng)用及垂徑定理的用法,屬于基礎(chǔ)題.13、【解析】

結(jié)合誘導(dǎo)公式化簡(jiǎn),再結(jié)合兩角差正弦公式分析即可【詳解】故答案為:【點(diǎn)睛】本題考查三角函數(shù)的化簡(jiǎn),誘導(dǎo)公式的使用,屬于基礎(chǔ)題14、或【解析】

根據(jù)題意可得圓心到直線的距離為,根據(jù)點(diǎn)到直線的距離公式列方程解出即可.【詳解】圓,即,圓的圓心為,半徑為,∵直線與圓交于兩點(diǎn)且為等邊三角形,∴,故圓心到直線的距離為,即,解得或,故答案為或.【點(diǎn)睛】本題主要考查了直線和圓相交的弦長(zhǎng)公式,以及點(diǎn)到直線的距離公式,考查運(yùn)算能力,屬于中檔題.15、【解析】

本題利用幾何概型求解.先根據(jù)到點(diǎn)的距離等于1的點(diǎn)構(gòu)成圖象特征,求出其體積,最后利用體積比即可得點(diǎn)到點(diǎn),的距離不大于1的概率;【詳解】解:由題意可知,點(diǎn)P到點(diǎn)或的距離都不大于1的點(diǎn)組成的集合分別以、為球心,1為半徑的兩個(gè)半球,其體積為,又該圓柱的體積為,則所求概率為.故答案為:【點(diǎn)睛】本題主要考查幾何概型、圓柱和球的體積等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查空間想象力、化歸與轉(zhuǎn)化思想.關(guān)鍵是明確滿足題意的測(cè)度為體積比.16、【解析】

求出長(zhǎng)方體體積與三棱錐的體積后即可得到棱錐的體積與剩下的幾何體體積之比.【詳解】設(shè)長(zhǎng)方體長(zhǎng)寬高分別為,,,所以長(zhǎng)方體體積,三棱錐體積,所以棱錐的體積與剩下的幾何體體積的之比為:.故答案為:.【點(diǎn)睛】本題主要考查了長(zhǎng)方體體積公式,三棱錐體積公式,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)證明;(2)【解析】

(1)由變形得,即,從而可證得結(jié)論成立,進(jìn)而可求出通項(xiàng)公式;(2)由(1)及條件可求出,然后根據(jù)分組求和法可得.【詳解】(1)證明:因?yàn)?,所以.因?yàn)樗运裕郑允鞘醉?xiàng)為,公比為2的等比數(shù)列,所以.(2)解:由(1)可得,所以.【點(diǎn)睛】證明數(shù)列為等比數(shù)列時(shí),在得到后,不要忘了說(shuō)明數(shù)列中沒(méi)有零項(xiàng)這一步驟.另外,對(duì)于數(shù)列的求和問(wèn)題,解題時(shí)要根據(jù)通項(xiàng)公式的特點(diǎn)選擇合適的方法進(jìn)行求解,屬于基礎(chǔ)題.18、(1)(2)證明見(jiàn)解析【解析】

(1)直接利用三角形的面積公式求得,再由余弦定理列方程求出結(jié)果;(2)兩次利用正弦定理,結(jié)合兩角差的正弦公式、二倍角的正弦公式進(jìn)行恒等變換求出結(jié)果.【詳解】(1)因?yàn)?即,又因?yàn)?,所以.在△中,由余弦定理得,即,解得.(2)在△中,,因?yàn)?,則,又,由正弦定理,有,所以.在△中,,由正弦定理得,,即,化簡(jiǎn)得展開(kāi)并整理得【點(diǎn)睛】以三角形為載體,三角恒等變換為手段,正弦定理、余弦定理為工具,對(duì)三角函數(shù)及解三角形進(jìn)行考查是近幾年高考考查的一類(lèi)熱點(diǎn)問(wèn)題,一般難度不大,但綜合性較強(qiáng).解答這類(lèi)問(wèn)題,兩角和與差的正余弦公式、誘導(dǎo)公式以及二倍角公式,一定要熟練掌握并靈活應(yīng)用,特別是二倍角公式的各種變化形式要熟記于心.19、(1);(2).【解析】

(1)由成等差數(shù)列,且公差為,可得,利用余弦定理可構(gòu)造關(guān)于的方程,解方程求得結(jié)果;(2)設(shè),利用外接圓面積為,求得外接圓的半徑.根據(jù)正弦定理,利用表示出三邊,將周長(zhǎng)表示為關(guān)于的函數(shù),利用三角函數(shù)的值域求解方法求得最大值.【詳解】(1)依次成等差數(shù)列,且公差為,,由余弦定理得:整理得:,解得:或又,則(2)設(shè),外接圓的半徑為,則,解得:由正弦定理可得:可得:,,的周長(zhǎng)又當(dāng),即:時(shí),取得最大值【點(diǎn)睛】本題考查了正弦定理、余弦定理解三角形、三角形周長(zhǎng)最值的求解.求解周長(zhǎng)的最值的關(guān)鍵是能夠?qū)⒅荛L(zhǎng)構(gòu)造為關(guān)于角的函數(shù),從而利用三角函數(shù)的知識(shí)來(lái)進(jìn)行求解.考查了推理能力與計(jì)算能力,屬于中檔題.20、(1)見(jiàn)解析;(2).【解析】

由題意可得,對(duì)a討論,可得所求解集;求得,由反比例函數(shù)的單調(diào)性,可得,解不等式即可得到所求范圍.【詳解】的不等式,即為,即為,當(dāng)時(shí),解集為;當(dāng)時(shí),解集為;當(dāng)時(shí),解集為,;,由在區(qū)間上是單調(diào)減函數(shù),可得,解得.即a的范圍是.【點(diǎn)睛】本題考查分式不等式的解法,注意運(yùn)用分類(lèi)討論思想方法,考查函數(shù)的單調(diào)性的判斷和運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.21、(1)(2)使的面積等于4的點(diǎn)有2個(gè)【解析】

(1)利用條件設(shè)圓的標(biāo)準(zhǔn)方程,由圓過(guò)點(diǎn)求t,確定圓方程.(2)設(shè),由確定阿波羅尼斯圓方程,與圓C為同一圓,可得,求出N點(diǎn)的坐標(biāo),建立ON方程,,再利用面積求點(diǎn)P到直線的距離,判斷與ON平行且距離為的兩條直線與圓C的位置關(guān)系可得結(jié)論.【詳解】(1)依題意可設(shè)圓心坐標(biāo)為,則半徑為,圓的方程可寫(xiě)成,因?yàn)閳A過(guò)點(diǎn),∴,∴,則圓的方程為。(2)由題知,直線的方程為

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論