版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
烏海市重點中學(xué)中考沖刺卷數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,Rt△AOB中,∠AOB=90°,OA在x軸上,OB在y軸上,點A、B的坐標分別為(,0),(0,1),把Rt△AOB沿著AB對折得到Rt△AO′B,則點O′的坐標為()A. B. C. D.2.如圖所示幾何體的主視圖是()A. B. C. D.3.如圖,在四邊形ABCD中,∠A=120°,∠C=80°.將△BMN沿著MN翻折,得到△FMN.若MF∥AD,F(xiàn)N∥DC,則∠F的度數(shù)為()A.70° B.80° C.90° D.100°4.下列分式中,最簡分式是()A. B. C. D.5.如圖是某幾何體的三視圖及相關(guān)數(shù)據(jù),則該幾何體的全面積是()A.15π B.24π C.20π D.10π6.如圖,已知二次函數(shù)y=ax2+bx的圖象與正比例函數(shù)y=kx的圖象相交于點A(1,2),有下面四個結(jié)論:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正確的是()A.①② B.②③ C.①④ D.③④7.如圖,已知函數(shù)與的圖象在第二象限交于點,點在的圖象上,且點B在以O(shè)點為圓心,OA為半徑的上,則k的值為A. B. C. D.8.下列計算,正確的是()A. B.C.3 D.9.如圖,D是等邊△ABC邊AD上的一點,且AD:DB=1:2,現(xiàn)將△ABC折疊,使點C與D重合,折痕為EF,點E、F分別在AC、BC上,則CE:CF=()A. B. C. D.10.已知正多邊形的一個外角為36°,則該正多邊形的邊數(shù)為().A.12 B.10 C.8 D.6二、填空題(本大題共6個小題,每小題3分,共18分)11.一組數(shù):2,1,3,,7,,23,…,滿足“從第三個數(shù)起,前兩個數(shù)依次為、,緊隨其后的數(shù)就是”,例如這組數(shù)中的第三個數(shù)“3”是由“”得到的,那么這組數(shù)中表示的數(shù)為______.12.如圖,在正六邊形ABCDEF的上方作正方形AFGH,聯(lián)結(jié)GC,那么的正切值為___.13.如圖,點A1,B1,C1,D1,E1,F(xiàn)1分別是正六邊形ABCDEF六條邊的中點,連接AB1,BC1,CD1,DE1,EF1,F(xiàn)A1后得到六邊形GHIJKL,則S六邊形GHIJKI:S六邊形ABCDEF的值為____.14.如圖1,AB是半圓O的直徑,正方形OPNM的對角線ON與AB垂直且相等,Q是OP的中點.一只機器甲蟲從點A出發(fā)勻速爬行,它先沿直徑爬到點B,再沿半圓爬回到點A,一臺微型記錄儀記錄了甲蟲的爬行過程.設(shè)甲蟲爬行的時間為t,甲蟲與微型記錄儀之間的距離為y,表示y與t的函數(shù)關(guān)系的圖象如圖2所示,那么微型記錄儀可能位于圖1中的()A.點MB.點NC.點PD.點Q15.已知點A(4,y1),B(,y2),C(-2,y3)都在二次函數(shù)y=(x-2)2-1的圖象上,則y1,y2,y3的大小關(guān)系是.16.因式分解:________.三、解答題(共8題,共72分)17.(8分)如圖,在Rt△ABC中,點O在斜邊AB上,以O(shè)為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結(jié)AD.已知∠CAD=∠B.求證:AD是⊙O的切線.若BC=8,tanB=,求⊙O的半徑.18.(8分)在同一副撲克牌中取出6張撲克牌,分別是黑桃2、4、6,紅心6、7、8.將撲克牌背面朝上分別放在甲、乙兩張桌面上,先從甲桌面上任意摸出一張黑桃,再從乙桌面上任意摸出一張紅心.表示出所有可能出現(xiàn)的結(jié)果;小黃和小石做游戲,制定了兩個游戲規(guī)則:規(guī)則1:若兩次摸出的撲克牌中,至少有一張是“6”,小黃贏;否則,小石贏.規(guī)則2:若摸出的紅心牌點數(shù)是黑桃牌點數(shù)的整數(shù)倍時,小黃贏;否則,小石贏.小黃想要在游戲中獲勝,會選擇哪一條規(guī)則,并說明理由.19.(8分)武漢二中廣雅中學(xué)為了進一步改進本校九年級數(shù)學(xué)教學(xué),提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.校教務(wù)處在九年級所有班級中,每班隨機抽取了6名學(xué)生,并對他們的數(shù)學(xué)學(xué)習(xí)情況進行了問卷調(diào)查:我們從所調(diào)查的題目中,特別把學(xué)生對數(shù)學(xué)學(xué)習(xí)喜歡程度的回答(喜歡程度分為:“非常喜歡”、“比較喜歡”、“不太喜歡”、“很不喜歡”,針對這個題目,問卷時要求每位被調(diào)查的學(xué)生必須從中選一項且只能選一項)結(jié)果進行了統(tǒng)計.現(xiàn)將統(tǒng)計結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請你根據(jù)以上提供的信息,解答下列問題:(1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;(2)所抽取學(xué)生對數(shù)學(xué)學(xué)習(xí)喜歡程度的眾數(shù)是,圖②中所在扇形對應(yīng)的圓心角是;(3)若該校九年級共有960名學(xué)生,請你估算該年級學(xué)生中對數(shù)學(xué)學(xué)習(xí)“不太喜歡”的有多少人?20.(8分)如圖,在平面直角坐標系中,O為坐標原點,△AOB是等腰直角三角形,∠AOB=90°,點A(2,1).(1)求點B的坐標;(2)求經(jīng)過A、O、B三點的拋物線的函數(shù)表達式;(3)在(2)所求的拋物線上,是否存在一點P,使四邊形ABOP的面積最大?若存在,求出點P的坐標;若不存在,請說明理由.21.(8分)平面直角坐標系中(如圖),已知拋物線經(jīng)過點和,與y軸相交于點C,頂點為P.(1)求這條拋物線的表達式和頂點P的坐標;(2)點E在拋物線的對稱軸上,且,求點E的坐標;(3)在(2)的條件下,記拋物線的對稱軸為直線MN,點Q在直線MN右側(cè)的拋物線上,,求點Q的坐標.22.(10分)隨著通訊技術(shù)迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷某校數(shù)學(xué)興趣小組設(shè)計了“你最喜歡的溝通方式”調(diào)查問卷每人必選且只選一種,在全校范圍內(nèi)隨機調(diào)查了部分學(xué)生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:這次統(tǒng)計共抽查了______名學(xué)生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為______;將條形統(tǒng)計圖補充完整;該校共有1500名學(xué)生,請估計該校最喜歡用“微信”進行溝通的學(xué)生有多少名.23.(12分)解方程24.先化簡再求值:÷(a﹣),其中a=2cos30°+1,b=tan45°.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
連接OO′,作O′H⊥OA于H.只要證明△OO′A是等邊三角形即可解決問題.【詳解】連接OO′,作O′H⊥OA于H,在Rt△AOB中,∵tan∠BAO==,∴∠BAO=30°,由翻折可知,∠BAO′=30°,∴∠OAO′=60°,∵AO=AO′,∴△AOO′是等邊三角形,∵O′H⊥OA,∴OH=,∴OH′=OH=,∴O′(,),
故選B.【點睛】本題考查翻折變換、坐標與圖形的性質(zhì)、等邊三角形的判定和性質(zhì)、銳角三角函數(shù)等知識,解題的關(guān)鍵是發(fā)現(xiàn)特殊三角形,利用特殊三角形解決問題.2、C【解析】
從正面看幾何體,確定出主視圖即可.【詳解】解:幾何體的主視圖為故選C.【點睛】本題考查了簡單組合體的三視圖,主視圖即為從正面看幾何體得到的視圖.3、B【解析】
首先利用平行線的性質(zhì)得出∠BMF=120°,∠FNB=80°,再利用翻折變換的性質(zhì)得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,進而求出∠B的度數(shù)以及得出∠F的度數(shù).【詳解】∵MF∥AD,F(xiàn)N∥DC,∠A=120°,∠C=80°,
∴∠BMF=120°,∠FNB=80°,
∵將△BMN沿MN翻折得△FMN,
∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,
∴∠F=∠B=180°-60°-40°=80°,
故選B.【點睛】主要考查了平行線的性質(zhì)以及多邊形內(nèi)角和定理以及翻折變換的性質(zhì),得出∠FMN=∠BMN,∠FNM=∠MNB是解題關(guān)鍵.4、A【解析】試題分析:選項A為最簡分式;選項B化簡可得原式==;選項C化簡可得原式==;選項D化簡可得原式==,故答案選A.考點:最簡分式.5、B【解析】解:根據(jù)三視圖得到該幾何體為圓錐,其中圓錐的高為4,母線長為5,圓錐底面圓的直徑為6,所以圓錐的底面圓的面積=π×()2=9π,圓錐的側(cè)面積=×5×π×6=15π,所以圓錐的全面積=9π+15π=24π.故選B.點睛:本題考查了圓錐的計算:圓錐的側(cè)面展開圖為扇形,扇形的半徑等于圓錐的母線長,扇形的弧長等于圓錐底面圓的周長.也考查了三視圖.6、B【解析】
根據(jù)拋物線圖象性質(zhì)確定a、b符號,把點A代入y=ax2+bx得到a與b數(shù)量關(guān)系,代入②,不等式kx≤ax2+bx的解集可以轉(zhuǎn)化為函數(shù)圖象的高低關(guān)系.【詳解】解:根據(jù)圖象拋物線開口向上,對稱軸在y軸右側(cè),則a>0,b<0,則①錯誤將A(1,2)代入y=ax2+bx,則2=9a+1b∴b=,∴a﹣b=a﹣()=4a﹣>-,故②正確;由正弦定義sinα=,則③正確;不等式kx≤ax2+bx從函數(shù)圖象上可視為拋物線圖象不低于直線y=kx的圖象則滿足條件x范圍為x≥1或x≤0,則④錯誤.故答案為:B.【點睛】二次函數(shù)的圖像,sinα公式,不等式的解集.7、A【解析】
由題意,因為與反比例函數(shù)都是關(guān)于直線對稱,推出A與B關(guān)于直線對稱,推出,可得,求出m即可解決問題;【詳解】函數(shù)與的圖象在第二象限交于點,點與反比例函數(shù)都是關(guān)于直線對稱,與B關(guān)于直線對稱,,,點故選:A.【點睛】本題考查反比例函數(shù)與一次函數(shù)的交點問題,反比例函數(shù)的圖像與性質(zhì),圓的對稱性及軸對稱的性質(zhì).解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,本題的突破點是發(fā)現(xiàn)A,B關(guān)于直線對稱.8、B【解析】
根據(jù)二次根式的加減法則,以及二次根式的性質(zhì)逐項判斷即可.【詳解】解:∵=2,∴選項A不正確;∵=2,∴選項B正確;∵3﹣=2,∴選項C不正確;∵+=3≠,∴選項D不正確.故選B.【點睛】本題主要考查了二次根式的加減法,以及二次根式的性質(zhì)和化簡,要熟練掌握,解答此題的關(guān)鍵是要明確:二次根式相加減,先把各個二次根式化成最簡二次根式,再把被開方數(shù)相同的二次根式進行合并,合并方法為系數(shù)相加減,根式不變.9、B【解析】
解:由折疊的性質(zhì)可得,∠EDF=∠C=60o,CE=DE,CF=DF再由∠BDF+∠ADE=∠BDF+∠BFD=120o可得∠ADE=∠BFD,又因∠A=∠B=60o,根據(jù)兩角對應(yīng)相等的兩三角形相似可得△AED∽△BDF所以,設(shè)AD=a,BD=2a,AB=BC=CA=3a,再設(shè)CE==DE=x,CF==DF=y,則AE=3a-x,BF=3a-y,所以整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,即故選B.【點睛】本題考查相似三角形的判定及性質(zhì).10、B【解析】
利用多邊形的外角和是360°,正多邊形的每個外角都是36°,即可求出答案.【詳解】解:360°÷36°=10,所以這個正多邊形是正十邊形.故選:B.【點睛】本題主要考查了多邊形的外角和定理.是需要識記的內(nèi)容.二、填空題(本大題共6個小題,每小題3分,共18分)11、-9.【解析】
根據(jù)題中給出的運算法則按照順序求解即可.【詳解】解:根據(jù)題意,得:,.故答案為:-9.【點睛】本題考查了有理數(shù)的運算,理解題意、弄清題目給出的運算法則是正確解題的關(guān)鍵.12、【解析】
延長GF與CD交于點D,過點E作交DF于點M,設(shè)正方形的邊長為,則解直角三角形可得,根據(jù)正切的定義即可求得的正切值【詳解】延長GF與CD交于點D,過點E作交DF于點M,設(shè)正方形的邊長為,則,故答案為:【點睛】考查正多邊形的性質(zhì),銳角三角函數(shù),構(gòu)造直角三角形是解題的關(guān)鍵.13、.【解析】
設(shè)正六邊形ABCDEF的邊長為4a,則AA1=AF1=FF1=2a.求出正六邊形的邊長,根據(jù)S六邊形GHIJKI:S六邊形ABCDEF=()2,計算即可;【詳解】設(shè)正六邊形ABCDEF的邊長為4a,則AA1=AF1=FF1=2a,作A1M⊥FA交FA的延長線于M,在Rt△AMA1中,∵∠MAA1=60°,∴∠MA1A=30°,∴AM=AA1=a,∴MA1=AA1·cos30°=a,F(xiàn)M=5a,在Rt△A1FM中,F(xiàn)A1=,∵∠F1FL=∠AFA1,∠F1LF=∠A1AF=120°,∴△F1FL∽△A1FA,∴,∴,∴FL=a,F(xiàn)1L=a,根據(jù)對稱性可知:GA1=F1L=a,∴GL=2a﹣a=a,∴S六邊形GHIJKI:S六邊形ABCDEF=()2=,故答案為:.【點睛】本題考查正六邊形與圓,解直角三角形,勾股定理,相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,學(xué)會利用參數(shù)解決問題.14、D【解析】D.試題分析:應(yīng)用排他法分析求解:若微型記錄儀位于圖1中的點M,AM最小,與圖2不符,可排除A.若微型記錄儀位于圖1中的點N,由于AN=BM,即甲蟲從A到B時是對稱的,與圖2不符,可排除B.若微型記錄儀位于圖1中的點P,由于甲蟲從A到OP與圓弧的交點時甲蟲與微型記錄儀之間的距離y逐漸減??;甲蟲從OP與圓弧的交點到A時甲蟲與微型記錄儀之間的距離y逐漸增大,即y與t的函數(shù)關(guān)系的圖象只有兩個趨勢,與圖2不符,可排除C.故選D.考點:1.動點問題的函數(shù)圖象分析;2.排他法的應(yīng)用.15、y3>y1>y2.【解析】試題分析:將A,B,C三點坐標分別代入解析式,得:y1=3,y2=5-4,y3=15,∴y3>y1>y2.考點:二次函數(shù)的函數(shù)值比較大小.16、n(m+2)(m﹣2)【解析】
先提取公因式n,再利用平方差公式分解即可.【詳解】m2n﹣4n=n(m2﹣4)=n(m+2)(m﹣2)..故答案為n(m+2)(m﹣2).【點睛】本題主要考查了提取公因式法和公式法分解因式,熟練掌握平方差公式是解題關(guān)鍵三、解答題(共8題,共72分)17、(1)證明見解析;(2).【解析】
(1)連接OD,由OD=OB,利用等邊對等角得到一對角相等,再由已知角相等,等量代換得到∠1=∠3,求出∠4為90°,即可得證;
(2)設(shè)圓的半徑為r,利用銳角三角函數(shù)定義求出AB的長,再利用勾股定理列出關(guān)于r的方程,求出方程的解即可得到結(jié)果.【詳解】(1)證明:連接,,,,,在中,,,,則為圓的切線;(2)設(shè)圓的半徑為,在中,,根據(jù)勾股定理得:,,在中,,,根據(jù)勾股定理得:,在中,,即,解得:.【點睛】此題考查了切線的判定與性質(zhì),以及勾股定理,熟練掌握切線的判定與性質(zhì)是解本題的關(guān)鍵.18、(1):,,,,,,,,共9種;(2)小黃要在游戲中獲勝,小黃會選擇規(guī)則1,理由見解析【解析】
(1)利用列舉法,列舉所有的可能情況即可;
(2)分別求出至少有一張是“6”和摸出的紅心牌點數(shù)是黑桃牌點數(shù)的整數(shù)倍時的概率,進行選擇即可.【詳解】(1)所有可能出現(xiàn)的結(jié)果如下:,,,,,,,,共9種;(1)摸牌的所有可能結(jié)果總數(shù)為9,至少有一張是6的有5種可能,∴在規(guī)劃1中,(小黃贏);紅心牌點數(shù)是黑桃牌點數(shù)的整倍數(shù)有4種可能,∴在規(guī)劃2中,(小黃贏).∵,∴小黃要在游戲中獲勝,小黃會選擇規(guī)則1.【點睛】考查列舉法以及概率的計算,明確概率的意義是解題的關(guān)鍵,概率等于所求情況數(shù)與總情況數(shù)的比.19、(1)答案見解析;(2)B,54°;(3)240人.【解析】
(1)根據(jù)D程度的人數(shù)和所占抽查總?cè)藬?shù)的百分率即可求出抽查總?cè)藬?shù),然后利用總?cè)藬?shù)減去A、B、D程度的人數(shù)即可求出C程度的人數(shù),然后分別計算出各程度人數(shù)占抽查總?cè)藬?shù)的百分率,從而補全統(tǒng)計圖即可;(2)根據(jù)眾數(shù)的定義即可得出結(jié)論,然后利用360°乘A程度的人數(shù)所占抽查總?cè)藬?shù)的百分率即可得出結(jié)論;(3)利用960乘C程度的人數(shù)所占抽查總?cè)藬?shù)的百分率即可.【詳解】解:(1)被調(diào)查的學(xué)生總?cè)藬?shù)為人,C程度的人數(shù)為人,則的百分比為、的百分比為、的百分比為,補全圖形如下:(2)所抽取學(xué)生對數(shù)學(xué)學(xué)習(xí)喜歡程度的眾數(shù)是、圖②中所在扇形對應(yīng)的圓心角是.故答案為:;;(3)該年級學(xué)生中對數(shù)學(xué)學(xué)習(xí)“不太喜歡”的有人答:該年級學(xué)生中對數(shù)學(xué)學(xué)習(xí)“不太喜歡”的有240人.【點睛】此題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖,結(jié)合條形統(tǒng)計圖和扇形統(tǒng)計圖得出有用信息是解決此題的關(guān)鍵.20、(1)B(-1.2);(2)y=;(3)見解析.【解析】
(1)過A作AC⊥x軸于點C,過B作BD⊥x軸于點D,則可證明△ACO≌△ODB,則可求得OD和BD的長,可求得B點坐標;(2)根據(jù)A、B、O三點的坐標,利用待定系數(shù)法可求得拋物線解析式;(3)由四邊形ABOP可知點P在線段AO的下方,過P作PE∥y軸交線段OA于點E,可求得直線OA解析式,設(shè)出P點坐標,則可表示出E點坐標,可表示出PE的長,進一步表示出△POA的面積,則可得到四邊形ABOP的面積,再利用二次函數(shù)的性質(zhì)可求得其面積最大時P點的坐標.【詳解】(1)如圖1,過A作AC⊥x軸于點C,過B作BD⊥x軸于點D,∵△AOB為等腰三角形,∴AO=BO,∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°,∴∠AOC=∠OBD,在△ACO和△ODB中∴△ACO≌△ODB(AAS),∵A(2,1),∴OD=AC=1,BD=OC=2,∴B(-1,2);(2)∵拋物線過O點,∴可設(shè)拋物線解析式為y=ax2+bx,把A、B兩點坐標代入可得,解得,∴經(jīng)過A、B、O原點的拋物線解析式為y=x2-x;(3)∵四邊形ABOP,∴可知點P在線段OA的下方,過P作PE∥y軸交AO于點E,如圖2,設(shè)直線AO解析式為y=kx,∵A(2,1),∴k=,∴直線AO解析式為y=x,設(shè)P點坐標為(t,t2-t),則E(t,t),∴PE=t-(t2-t)=-t2+t=-(t-1)2+,∴S△AOP=PE×2=PE═-(t-1)2+,由A(2,1)可求得OA=OB=,∴S△AOB=AO?BO=,∴S四邊形ABOP=S△AOB+S△AOP=-(t-1)2++=,∵-<0,∴當(dāng)t=1時,四邊形ABOP的面積最大,此時P點坐標為(1,-),綜上可知存在使四邊形ABOP的面積最大的點P,其坐標為(1,-).【點睛】本題為二次函數(shù)的綜合應(yīng)用,主要涉及待定系數(shù)法、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)、三角形的面積以及方程思想等知識.在(1)中構(gòu)造三角形全等是解題的關(guān)鍵,在(2)中注意待定系數(shù)法的應(yīng)用,在(3)中用t表示出四邊形ABOP的面積是解題的關(guān)鍵.本題考查知識點較多,綜合性較強,難度適中.21、(1),頂點P的坐標為;(2)E點坐標為;(3)Q點的坐標為.【解析】
(1)利用交點式寫出拋物線解析式,把一般式配成頂點式得到頂點P的坐標;(2)設(shè),根據(jù)兩點間的距離公式,利用得到,然后解方程求出t即可得到E點坐標;(3)直線交軸于,作于,如圖,利用得到,設(shè),則,再在中利用正切的定義得到,即,然后解方程求出m即可得到Q點坐標.【詳解】解:(1)拋物線解析式為,即,,頂點P的坐標為;(2)拋物線的對稱軸為直線,設(shè),,,解得,E點坐標為;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版勞務(wù)加工承包合同范本
- 2024年藝術(shù)品買賣合同賠償條例
- 2025年度新型城鎮(zhèn)化租賃住房建設(shè)合同4篇
- 2025年度智能家居項目瓷磚材料供應(yīng)合同4篇
- 2025年度體育場館搭棚施工及維護管理合同4篇
- 2024版鎳氫電池產(chǎn)品銷售合同
- 2025年度學(xué)校食堂及餐飲服務(wù)承包合同范本4篇
- 2025年度新能源汽車購置合同示范文本4篇
- 2025年度特色農(nóng)家樂經(jīng)營權(quán)轉(zhuǎn)讓合同范本3篇
- 2025年度智能窗簾控制系統(tǒng)研發(fā)與市場推廣合同4篇
- 特種設(shè)備行業(yè)團隊建設(shè)工作方案
- 眼內(nèi)炎患者護理查房課件
- 肯德基經(jīng)營策略分析報告總結(jié)
- 買賣合同簽訂和履行風(fēng)險控制
- 中央空調(diào)現(xiàn)場施工技術(shù)總結(jié)(附圖)
- 水質(zhì)-濁度的測定原始記錄
- 數(shù)字美的智慧工業(yè)白皮書-2023.09
- -安規(guī)知識培訓(xùn)
- 2021-2022學(xué)年四川省成都市武侯區(qū)部編版四年級上冊期末考試語文試卷(解析版)
- 污水處理廠設(shè)備安裝施工方案
- 噪聲監(jiān)測記錄表
評論
0/150
提交評論