福建省莆田第二十五中學2024屆高一下數(shù)學期末復習檢測試題含解析_第1頁
福建省莆田第二十五中學2024屆高一下數(shù)學期末復習檢測試題含解析_第2頁
福建省莆田第二十五中學2024屆高一下數(shù)學期末復習檢測試題含解析_第3頁
福建省莆田第二十五中學2024屆高一下數(shù)學期末復習檢測試題含解析_第4頁
福建省莆田第二十五中學2024屆高一下數(shù)學期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省莆田第二十五中學2024屆高一下數(shù)學期末復習檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.方程的解集為()A.B.C.D.2.我國古代數(shù)學名著九章算術記載:“芻甍者,下有袤有廣,而上有袤無丈芻,草也;甍,屋蓋也”翻譯為:“底面有長有寬為矩形,頂部只有長沒有寬為一條棱芻甍字面意思為茅草屋頂”如圖,為一芻甍的三視圖,其中正視圖為等腰梯形,側視圖為等腰三角形則它的體積為A. B.160 C. D.643.南北朝數(shù)學家祖暅在推導球的體積公式時構造了一個中間空心的幾何體,經(jīng)后繼學者改進后這個中間空心的幾何體其三視圖如圖所示,下列那個值最接近該幾何體的體積()A.8 B.12 C.16 D.244.設,,在,,…,中,正數(shù)的個數(shù)是()A.15 B.16 C.18 D.205.已知是定義在上的偶函數(shù),且在上遞增,那么一定有()A. B.C. D.6.為了得到函數(shù)的圖象,只需把函數(shù)的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度7.若直線mx+2y+m=0與直線3mx+(m-1)y+7=0平行,則m的值為()A.7 B.0或7 C.0 D.48.已知數(shù)列且是首項為2,公差為1的等差數(shù)列,若數(shù)列是遞增數(shù)列,且滿足,則實數(shù)a的取值范圍是()A. B.C. D.9.已知關于的不等式的解集是,則的值是()A. B. C. D.10.預測人口的變化趨勢有多種方法,“直接推算法”使用的公式是(),為預測人口數(shù),為初期人口數(shù),為預測期內年增長率,為預測期間隔年數(shù).如果在某一時期有,那么在這期間人口數(shù)A.呈下降趨勢 B.呈上升趨勢 C.擺動變化 D.不變二、填空題:本大題共6小題,每小題5分,共30分。11.已知,是平面內兩個互相垂直的單位向量,若向量滿足,則的最大值是.12.函數(shù)的單調遞減區(qū)間為______.13.在中,,,,點在線段上,若,則的面積是_____.14.已知等比數(shù)列{an}的前n項和為Sn,若S3=7,S6=63,則an=_____15.在平面直角坐標系中,點到直線的距離為______.16.設為,的反函數(shù),則的值域為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,,函數(shù).(1)求函數(shù)的單調遞增區(qū)間;(2)在中,內角、、所對邊的長分別是、、,若,,,求的面積.18.已知,,求證:(1);(2).19.已知,,其中,,且函數(shù)在處取得最大值.(1)求的最小值,并求出此時函數(shù)的解析式和最小正周期;(2)在(1)的條件下,先將的圖像上的所有點向右平移個單位,再把所得圖像上所有點的橫坐標伸長為原來的2倍(縱坐標不變),然后將所得圖像上所有的點向下平移個單位,得到函數(shù)的圖像.若在區(qū)間上,方程有兩個不相等的實數(shù)根,求實數(shù)a的取值范圍;(3)在(1)的條件下,已知點P是函數(shù)圖像上的任意一點,點Q為函數(shù)圖像上的一點,點,且滿足,求的解集.20.某校為了了解學生每天平均課外閱讀的時間(單位:分鐘),從本校隨機抽取了100名學生進行調查,根據(jù)收集的數(shù)據(jù),得到學生每天課外閱讀時間的頻率分布直方圖,如圖所示,若每天課外閱讀時間不超過30分鐘的有45人.(Ⅰ)求,的值;(Ⅱ)根據(jù)頻率分布直方圖,估計該校學生每天課外閱讀時間的中位數(shù)及平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表).21.如圖,在平面直角坐標系xOy中,已知以M點為圓心的圓及其上一點.(1)設圓N與y軸相切,與圓M外切,且圓心在直線上,求圓N的標準方程;(2)設平行于OA的直線l與圓M相交于B,C兩點且,求直線l的方程.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

利用反三角函數(shù)的定義以及正切函數(shù)的周期為,即可得到原方程的解.【詳解】由,根據(jù)正切函數(shù)圖像以及周期可知:,故選:C【點睛】本題考查了反三角函數(shù)的定義以及正切函數(shù)的性質,需熟記正切函數(shù)的圖像與性質,屬于基礎題.2、A【解析】

分析:由三視圖可知該芻甍是一個組合體,它由成一個直三棱柱和兩個全等的四棱錐組成,根據(jù)三視圖中的數(shù)據(jù)可得其體積.詳解:由三視圖可知該芻甍是一個組合體,它由成一個直三棱柱和兩個全等的四棱錐組成,根據(jù)三視圖中的數(shù)據(jù),求出棱錐與棱柱的體積相加即可,,故選A.點睛:本題利用空間幾何體的三視圖重點考查學生的空間想象能力和抽象思維能力,屬于難題.三視圖問題是考查學生空間想象能力最常見題型,也是高考熱點.觀察三視圖并將其“翻譯”成直觀圖是解題的關鍵,不但要注意三視圖的三要素“高平齊,長對正,寬相等”,還要特別注意實線與虛線以及相同圖形的不同位置對幾何體直觀圖的影響,對簡單組合體三視圖問題,先看俯視圖確定底面的形狀,根據(jù)正視圖和側視圖,確定組合體的形狀.3、C【解析】

由三視圖確定此幾何體的結構,圓柱的體積減去同底同高的圓錐的體積即為所求.【詳解】該幾何體是一個圓柱挖掉一個同底同高的圓錐,圓柱底為2,高為2,所求體積為,所以C選項最接近該幾何體的體積.故選:C【點睛】本題考查由三視圖確定幾何體的結構及求其體積,屬于基礎題.4、D【解析】

根據(jù)數(shù)列的通項公式可判斷出數(shù)列的正負,然后分析的正負,再由的正負即可確定出,,…,中正數(shù)的個數(shù).【詳解】當時,,當時,,因為,所以,因為,,所以取等號時,所以均為正,又因為,所以均為正,所以正數(shù)的個數(shù)是:.故選:D.【點睛】本題考查數(shù)列與函數(shù)綜合應用,著重考查了推理判斷能力,難度較難.對于數(shù)列各項和的正負,可通過數(shù)列本身的單調性周期性進行判斷,從而為判斷各項和的正負做鋪墊.5、D【解析】

根據(jù)題意,結合,可知,再利用偶函數(shù)的性質即可得出結論.【詳解】是定義在上的偶函數(shù),,在上遞增,,即,故選:D.【點睛】本題考查函數(shù)奇偶性與單調性的簡單應用,判斷出是解題關鍵.6、A【解析】

根據(jù),因此只需把函數(shù)的圖象向左平移個單位長度.【詳解】因為,所以只需把函數(shù)的圖象向左平移個單位長度即可得,選A.【點睛】本題主要考查就三角函數(shù)的變換,左加右減只針對,屬于基礎題.7、B【解析】

根據(jù)直線和直線平行則斜率相等,故m(m-1)=3m×2,求解即可?!驹斀狻俊咧本€mx+2y+m=0與直線3mx+(m-1)y+7=0平行,∴m(m-1)=3m×2,∴m=0或7,經(jīng)檢驗,都符合題意,故選B.【點睛】本題屬于基礎題,利用直線的平行關系,斜率相等求解參數(shù)。8、D【解析】

根據(jù)等差數(shù)列和等比數(shù)列的定義可確定是以為首項,為公比的等比數(shù)列,根據(jù)等比數(shù)列通項公式,進而求得;由數(shù)列的單調性可知;分別在和兩種情況下討論可得的取值范圍.【詳解】由題意得:,,是以為首項,為公比的等比數(shù)列為遞增數(shù)列,即①當時,,,即只需即可滿足②當時,,,即只需即可滿足綜上所述:實數(shù)的取值范圍為故選:【點睛】本題考查根據(jù)數(shù)列的單調性求解參數(shù)范圍的問題,涉及到等差和等比數(shù)列定義的應用、等比數(shù)列通項公式的求解、對數(shù)運算法則的應用等知識;解題關鍵是能夠根據(jù)單調性得到關于變量和的關系式,進而通過分離變量的方式將問題轉化為變量與關于的式子的最值的大小關系問題.9、A【解析】

先利用韋達定理得到關于a,b的方程組,解方程組即得a,b的值,即得解.【詳解】由題得,所以a+b=7.故選:A【點睛】本題主要考查一元二次不等式的解集,意在考查學生對該知識的理解掌握水平和分析推理能力.10、A【解析】

可以通過與之間的大小關系進行判斷.【詳解】當時,,所以,呈下降趨勢.【點睛】判斷變化率可以通過比較初始值與變化之后的數(shù)值之間的大小來判斷.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

,,是平面內兩個相互垂直的單位向量,∴,∴,,,為與的夾角,∵是平面內兩個相互垂直的單位向量∴,即,所以當時,即與共線時,取得最大值為,故答案為.12、【解析】

利用二倍角降冪公式和輔助角公式可得出,然后解不等式,即可得出函數(shù)的單調遞減區(qū)間.【詳解】,解不等式,得,因此,函數(shù)的單調遞減區(qū)間為.故答案為:.【點睛】本題考查正弦型三角函數(shù)單調區(qū)間的求解,一般利用三角恒等變換思想將三角函數(shù)解析式化簡,考查計算能力,屬于中等題.13、【解析】

過作于,設,運用勾股定理和三角形的面積公式,計算可得所求值.【詳解】過作于,設,,,,又,可得,即有,可得的面積為.故答案為.【點睛】本題考查解三角形,考查勾股定理的運用,以及三角形的面積公式,考查化簡運算能力,屬于基礎題.14、【解析】

利用等比數(shù)列的前n項和公式列出方程組,求出首項與公比,由此能求出該數(shù)列的通項公式.【詳解】由題意,,不合題意舍去;當?shù)缺葦?shù)列的前n項和為,即,解得,所以,故答案為:.【點睛】本題主要考查了等比數(shù)列的通項公式的求法,考查等比數(shù)列的性質等基礎知識,考查運算求解能力,是基礎題.15、2【解析】

利用點到直線的距離公式即可得到答案?!驹斀狻坑牲c到直線的距離公式可知點到直線的距離故答案為2【點睛】本題主要考查點到直線的距離,熟練掌握公式是解題的關鍵,屬于基礎題。16、【解析】

求出原函數(shù)的值域可得出其反函數(shù)的定義域,取交集可得出函數(shù)的定義域,再由函數(shù)的單調性可求出該函數(shù)的值域.【詳解】函數(shù)在上為增函數(shù),則函數(shù)的值域為,所以,函數(shù)的定義域為.函數(shù)的定義域為,由于函數(shù)與函數(shù)單調性相同,可知,函數(shù)在上為增函數(shù).當時,函數(shù)取得最小值;當時,函數(shù)取得最大值.因此,函數(shù)的值域為.故答案為:.【點睛】本題考查函數(shù)值域的求解,考查函數(shù)單調性的應用,明確兩個互為反函數(shù)的兩個函數(shù)具有相同的單調性是解題的關鍵,考查分析問題和解決問題的能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)的增區(qū)間是,(2)【解析】

(1)利用平面向量數(shù)量積的坐標表示公式、二倍角的正弦公式、余弦二倍角的降冪公式、以及輔助角公式可以函數(shù)的解析式化為正弦型函數(shù)解析式的形式,最后利用正弦型函數(shù)的單調性求出函數(shù)的單調遞增區(qū)間;(2)根據(jù)(1)所得的結論和,可以求出角的值,利用三角形內角和定理可以求出角的值,再運用正弦定理可得出的值,最后利用三角形面積公式可以求出的面積..【詳解】(1)令,解得∴的增區(qū)間是,(2)∵∴解得又∵∴中,由正弦定理得∴【點睛】本題考查了平面向量數(shù)量積的坐標表示公式,考查了二倍角的正弦公式、余弦二倍角的降冪公式、以及輔助角公式,考查了正弦定理和三角形面積公式,考查了數(shù)學運算能力.18、(1)證明見詳解;(2)證明見詳解.【解析】

(1)利用不等式性質,得,再證,最后證明;(2)先證,再證明.【詳解】證明:(1)因為,所以,于是,即,由,得.(2)因為,所,又因為,所以,所以.【點睛】本題考查利用不等式性質證明不等式,需要熟練掌握不等式的性質,屬綜合基礎題.19、(1)的最小值為1,,,(2)(3)原不等式的解集為【解析】

(1)先將化成正弦型,然后利用在處取得最大值求出,然后即可得到的解析式和周期(2)先根據(jù)圖象的變換得到,然后畫出在區(qū)間上的圖象,條件轉化為的圖象與直線有兩個交點即可(3)利用坐標的對應關系式,求出的函數(shù)的關系式,進一步利用三角不等式的應用求出結果.【詳解】(1)因為,所以因為在處取得最大值.所以,即當時的最小值為1此時,(2)將的圖像上的所有的點向右平移個單位得到的函數(shù)為,再把所得圖像上所有的點的橫坐標伸長為原來的2倍(縱坐標不變)得到的函數(shù)為,然后將所得圖像上所有的點向下平移個單位,得到函數(shù)在區(qū)間上的圖象為:方程有兩個不相等的實數(shù)根等價于的圖象與直線有兩個交點所以,解得(3)設,因為點,且滿足所以,所以因為點為函數(shù)圖像上的一點所以即因為,所以所以所以所以原不等式的解集為【點睛】本題考查的知識要點:三角函數(shù)關系式的變換,正弦型函數(shù)的性質的應用,平面向量的數(shù)量積的應用,三角不等式的解法及應用,主要考查學生的運算能力和轉換能力,屬于中檔題.20、(Ⅰ);(Ⅱ)中位數(shù)估計值為32,平均數(shù)估計值為32.5.【解析】

(Ⅰ)由頻率分布直方圖的性質列出方程組,能求出,;(Ⅱ)由頻率分布直方圖,能估計該校學生每天課外閱讀時間的中位數(shù)及平均值.【詳解】(Ⅰ)由題意得,解得(Ⅱ)設該校學生每天課外閱讀時間的中位數(shù)估計值為,則解得:.該校學生每天課外閱讀時間的平均數(shù)估計值為:.答:該校學生每天課外閱讀時間的中位數(shù)估計值為32,平均數(shù)估計值為32.5.【點睛】本題考查頻率、中位數(shù)、平均數(shù)的求法,考查頻率分布直方圖的性質等基礎知識,考查運算求解能力,是基礎題.21、(1)(2)或.【解析】

(1)根據(jù)由圓心在直線y=6上,可設,再由圓N與y軸相切,與圓M外切得到圓N的半

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論