2025屆山東省曹縣三桐中學(xué)年高一下數(shù)學(xué)期末聯(lián)考模擬試題含解析_第1頁
2025屆山東省曹縣三桐中學(xué)年高一下數(shù)學(xué)期末聯(lián)考模擬試題含解析_第2頁
2025屆山東省曹縣三桐中學(xué)年高一下數(shù)學(xué)期末聯(lián)考模擬試題含解析_第3頁
2025屆山東省曹縣三桐中學(xué)年高一下數(shù)學(xué)期末聯(lián)考模擬試題含解析_第4頁
2025屆山東省曹縣三桐中學(xué)年高一下數(shù)學(xué)期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆山東省曹縣三桐中學(xué)年高一下數(shù)學(xué)期末聯(lián)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知是的共軛復(fù)數(shù),若復(fù)數(shù),則在復(fù)平面內(nèi)對應(yīng)的點(diǎn)是()A. B. C. D.2.的值是()A. B. C. D.3.若扇形的面積為、半徑為1,則扇形的圓心角為()A. B. C. D.4.已知數(shù)列滿足,,則數(shù)列的前5項(xiàng)和()A.15 B.28 C.45 D.665.二進(jìn)制是計(jì)算機(jī)技術(shù)中廣泛采用的一種數(shù)制。二進(jìn)制數(shù)據(jù)是用0和1兩個數(shù)碼來表示的數(shù)。它的基數(shù)為2,進(jìn)位規(guī)則是“逢二進(jìn)一”,借位規(guī)則“借一當(dāng)二”。當(dāng)前的計(jì)算機(jī)系統(tǒng)使用的基本上是二進(jìn)制系統(tǒng),計(jì)算機(jī)中的二進(jìn)制則是一個非常微小的開關(guān),用1來表示“開”,用0來表示“關(guān)”。如圖所示,把十進(jìn)制數(shù)1010化為二進(jìn)制數(shù)(1010)2,十進(jìn)制數(shù)9910化為二進(jìn)制數(shù)11000112,把二進(jìn)制數(shù)(10110A.932 B.931 C.106.已知a,b,c∈R,那么下列命題中正確的是()A.若a>b,則ac2>bc2B.若,則a>bC.若a3>b3且ab<0,則D.若a2>b2且ab>0,則7.已知,,,若不等式恒成立,則t的最大值為()A.4 B.6 C.8 D.98.已知向量,且為正實(shí)數(shù),若滿足,則的最小值為()A. B. C. D.9.在ΔABC中,角A、B、C所對的邊分別為a、b、c,A=45°,B=30°,b=2,則a=()A.2 B.63 C.2210.已知數(shù)列滿足,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)y=tan12.關(guān)于函數(shù)f(x)=4sin(2x+)(x∈R),有下列命題:①y=f(x)的表達(dá)式可改寫為y=4cos(2x﹣);②y=f(x)是以2π為最小正周期的周期函數(shù);③y=f(x)的圖象關(guān)于點(diǎn)對稱;④y=f(x)的圖象關(guān)于直線x=﹣對稱.其中正確的命題的序號是.13.點(diǎn)關(guān)于直線的對稱點(diǎn)的坐標(biāo)為_____.14.某課題組進(jìn)行城市空氣質(zhì)量調(diào)查,按地域把24個城市分成甲、乙、丙三組,對應(yīng)的城市數(shù)分別為4,12,8,若用分層抽樣抽取6個城市,則丙組中應(yīng)抽取的城市數(shù)為_______.15.已知函數(shù)的圖象關(guān)于點(diǎn)對稱,記在區(qū)間的最大值為,且在()上單調(diào)遞增,則實(shí)數(shù)的最小值是__________.16.等差數(shù)列中,,則其前12項(xiàng)之和的值為______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知向量=(sinx,cosx),=(cosx,cosx),=(2,1).(1)若∥,求sinxcosx的值;(2)若0<x≤,求函數(shù)f(x)=·的值域.18.某研究機(jī)構(gòu)對高三學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù).x681012y2356(1)請根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;(2)判斷該高三學(xué)生的記憶力x和判斷力是正相關(guān)還是負(fù)相關(guān);并預(yù)測判斷力為4的同學(xué)的記憶力.(參考公式:)19.已知的三個內(nèi)角,,的對邊分別為,,,函數(shù),且當(dāng)時,取最大值.(1)若關(guān)于的方程,有解,求實(shí)數(shù)的取值范圍;(2)若,且,求的面積.20.某快餐連鎖店招聘外賣騎手,該快餐連鎖店提供了兩種日工資方案:方案(1)規(guī)定每日底薪50元,快遞業(yè)務(wù)每完成一單提成3元;方案(2)規(guī)定每日底薪100元,快遞業(yè)務(wù)的前44單沒有提成,從第45單開始,每完成一單提成5元.該快餐連鎖店記錄了每天騎手的人均業(yè)務(wù)量.現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為[25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七組,整理得到如圖所示的頻率分布直方圖。(1)隨機(jī)選取一天,估計(jì)這一天該連鎖店的騎手的人均日快遞業(yè)務(wù)量不少于65單的概率;(2)若騎手甲、乙選擇了日工資方案(1),丙、丁選擇了日工資方案(2).現(xiàn)從上述4名騎手中隨機(jī)選取2人,求至少有1名騎手選擇方案(1)的概率;21.如圖,在四棱錐P‐ABCD中,四邊形ABCD為正方形,PA⊥平面ABCD,E為PD的中點(diǎn).求證:(1)PB∥平面AEC;(2)平面PCD⊥平面PAD.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】由,得,所以在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為,故選A.2、A【解析】由于==.故選A.3、B【解析】設(shè)扇形的圓心角為α,則∵扇形的面積為,半徑為1,

∴故選B4、C【解析】

根據(jù)可知數(shù)列為等差數(shù)列,再根據(jù)等差數(shù)列的求和性質(zhì)求解即可.【詳解】因?yàn)?故數(shù)列是以4為公差,首項(xiàng)的等差數(shù)列.故.故選:C【點(diǎn)睛】本題主要考查了等差數(shù)列的判定與等差數(shù)列求和的性質(zhì)與計(jì)算,屬于基礎(chǔ)題.5、D【解析】

利用古典概型的概率公式求解.【詳解】二進(jìn)制的后五位的排列總數(shù)為25二進(jìn)制的后五位恰好有三個“1”的個數(shù)為C5由古典概型的概率公式得P=10故選:D【點(diǎn)睛】本題主要考查排列組合的應(yīng)用,考查古典概型的概率的計(jì)算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.6、C【解析】

根據(jù)不等式的性質(zhì),對A、B、C、D四個選項(xiàng)通過舉反例進(jìn)行一一驗(yàn)證.【詳解】A.若a>b,則ac2>bc2(錯),若c=0,則A不成立;B.若,則a>b(錯),若c<0,則B不成立;C.若a3>b3且ab<0,則(對),若a3>b3且ab<0,則D.若a2>b2且ab>0,則(錯),若,則D不成立.故選:C.【點(diǎn)睛】此題主要考查不等關(guān)系與不等式的性質(zhì)及其應(yīng)用,例如舉反例法求解比較簡單.兩個式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質(zhì)得到大小關(guān)系,有時可以代入一些特殊的數(shù)據(jù)得到具體值,進(jìn)而得到大小關(guān)系.7、C【解析】

因?yàn)椴坏仁胶愠闪?,所以只求得的最小值即可,結(jié)合,用“1”的代換求其最小值.【詳解】因?yàn)?,,,若不等式恒成立,令y=,當(dāng)且僅當(dāng)且即時,取等號所以所以故t的最大值為1.故選:C【點(diǎn)睛】本題主要考查不等式恒成立和基本不等式求最值,還考查了運(yùn)算求解的能力,屬于中檔題.8、A【解析】

根據(jù)向量的數(shù)量積結(jié)合基本不等式即可.【詳解】由題意得,因?yàn)?,為正?shí)數(shù),則當(dāng)且僅當(dāng)時取等.所以選擇A【點(diǎn)睛】本題主要考查了向量的數(shù)量積以及基本不等式,在用基本不等式時要滿足一正二定三相等.屬于中等題9、C【解析】

利用正弦定理得到答案.【詳解】asin故答案選C【點(diǎn)睛】本題考查了正弦定理,意在考查學(xué)生的計(jì)算能力.10、B【解析】

分別令,求得不等式,由此證得成立.【詳解】當(dāng)時,,當(dāng)時,,當(dāng)時,,所以,所以,故選B.【點(diǎn)睛】本小題主要考查根據(jù)數(shù)列遞推關(guān)系判斷項(xiàng)的大小關(guān)系,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、{【解析】

解方程12【詳解】由題得12x+故答案為{x|x≠2kπ+【點(diǎn)睛】本題主要考查正切型函數(shù)的定義域的求法,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.12、①③【解析】

∵f(x)=4sin(2x+)=4cos()=4cos(﹣2x+)=4cos(2x﹣),故①正確;∵T=,故②不正確;令x=﹣代入f(x)=4sin(2x+)得到f(﹣)=4sin(+)=0,故y=f(x)的圖象關(guān)于點(diǎn)對稱,③正確④不正確;故答案為①③.13、【解析】

設(shè)關(guān)于直線的對稱點(diǎn)的坐標(biāo)為,再根據(jù)中點(diǎn)在直線上,且與直線垂直求解即可.【詳解】設(shè)關(guān)于直線的對稱點(diǎn)的坐標(biāo)為,則中點(diǎn)為,則在直線上,故①.又與直線垂直有②,聯(lián)立①②可得.故.故答案為:【點(diǎn)睛】本題主要考查了點(diǎn)關(guān)于直線對稱的點(diǎn)坐標(biāo),屬于基礎(chǔ)題.14、2【解析】

根據(jù)抽取6個城市作為樣本,得到每個個體被抽到的概率,用概率乘以丙組的數(shù)目,即可得到結(jié)果.【詳解】城市有甲、乙、丙三組,對應(yīng)的城市數(shù)分別為4,12,8.

本市共有城市數(shù)24,用分層抽樣的方法從中抽取一個容量為6的樣本,

每個個體被抽到的概率是,丙組中對應(yīng)的城市數(shù)8,則丙組中應(yīng)抽取的城市數(shù)為,故答案為2.【點(diǎn)睛】本題主要考查分層抽樣的應(yīng)用以及古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題.分層抽樣適合總體中個體差異明顯,層次清晰的抽樣,其主要性質(zhì)是,每個層次,抽取的比例相同.15、【解析】,所以,又,得,所以,且求得,又,得單調(diào)遞增區(qū)間為,由題意,當(dāng)時,。點(diǎn)睛:本題考查三角函數(shù)的化簡及性質(zhì)應(yīng)用。本題首先考查三角函數(shù)的輔助角公式應(yīng)用,并結(jié)合對稱中心的性質(zhì),得到函數(shù)解析式。然后考察三角函數(shù)的單調(diào)性,利用整體思想求出單調(diào)區(qū)間,求得答案。16、【解析】

利用等差數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式直接求解.【詳解】∵等差數(shù)列{an}中,a3+a10=25,∴其前12項(xiàng)之和S126(a3+a10)=6×25=1.故答案為:1.【點(diǎn)睛】本題考查等差數(shù)列的前n項(xiàng)和的公式,考查等差數(shù)列的性質(zhì)的應(yīng)用,考查運(yùn)算求解能力,是基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)由向量共線得tanx=2,再由同角三角函數(shù)基本關(guān)系得sinxcosx=,即可求解;(2)整理f(x)=·=sin(2x+)+,由三角函數(shù)性質(zhì)即可求解最值【詳解】(1)∵∥,∴sinx=2cosx,tanx=2.∴sinxcosx===(2)f(x)=·=sinxcosx+cos2x=sin2x+(1+cos2x)=sin(2x+)+∵0<x≤,∴<2x+≤.∴sin(2x+)≤1∴1≤f(x)≤.所以f(x)的值域?yàn)椋骸军c(diǎn)睛】本題考查三角函數(shù)恒等變換,同角三角函數(shù)基本關(guān)系式,三角函數(shù)性質(zhì),熟記公式,準(zhǔn)確計(jì)算是關(guān)鍵,是中檔題18、(1)(2)該高三學(xué)生的記憶力x和判斷力是正相關(guān);判斷力為4的同學(xué)的記憶力約為9【解析】

(1)根據(jù)所給數(shù)據(jù)和公式計(jì)算回歸方程的系數(shù),注意回歸直線過中心點(diǎn),得回歸方程;(2)根據(jù)回歸系數(shù)的正負(fù)可得正相關(guān)還是負(fù)相關(guān),令代入可得估計(jì)值.【詳解】(1),,,,,,故線性回歸方程為.(2)因?yàn)椋士梢耘袛?,該高三學(xué)生的記憶力x和判斷力是正相關(guān);由回歸直線方程預(yù)測,判斷力為4的同學(xué)的記憶力約為9.【點(diǎn)睛】本題考查求線性回歸直線方程,考查變量的相關(guān)性及回歸方程的應(yīng)用.回歸方程中的系數(shù)的正負(fù)說明兩數(shù)據(jù)的正負(fù)相關(guān),系數(shù)為正,則為正相關(guān),系數(shù)為負(fù),則為負(fù)相關(guān).19、(1);(2).【解析】

(1)利用兩角和差的正弦公式整理可得:,再利用已知可得:(),結(jié)合已知可得:,求得:時,,問題得解.(2)利用正弦定理可得:,結(jié)合可得:,對邊利用余弦定理可得:,結(jié)合已知整理得:,再利用三角形面積公式計(jì)算得解.【詳解】解:(1).因?yàn)樵谔幦〉米畲笾?,所以?即.因?yàn)?,所以,所?因?yàn)?,所以所以,因?yàn)殛P(guān)于的方程有解,所以的取值范圍為.(2)因?yàn)?,,由正弦定理,于是.又,所?由余弦定理得:,整理得:,即,所以,所以.【點(diǎn)睛】本題主要考查了兩角和、差的正弦公式應(yīng)用,還考查了三角函數(shù)的性質(zhì)及方程與函數(shù)的關(guān)系,還考查了正弦定理、余弦定理的應(yīng)用及三角形面積公式,考查計(jì)算能力及轉(zhuǎn)化能力,屬于中檔題.20、(1)0.4(2)【解析】

(1)從頻率分布直方圖中計(jì)算出前四組矩形面積之和,即為所求概率;(2)列舉出全部的基本事件,并確定出基本事件的總數(shù),然后從中找出事件“至少有名騎手選擇方案(1)”所包含的基本事件數(shù),最后利用古典概型的概率公式可計(jì)算出結(jié)果?!驹斀狻浚?)設(shè)事件為“隨機(jī)選取一天,這一天該連鎖店的騎手的人均日快遞業(yè)務(wù)量不少于單”依題意,連鎖店的人均日快遞業(yè)務(wù)量不少于單的頻率分別為:因?yàn)樗怨烙?jì)為;(2)設(shè)事件為“從四名騎手中隨機(jī)選取2人,至少有1名騎手選擇方案(1)”從四名新聘騎手中隨機(jī)選取2名騎手,有6種情況,即{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}其中至少有1名騎手選擇方案()的情況為{甲,乙},{甲,丙},,{甲,丁},{乙,丙},{乙,丁},所以?!军c(diǎn)睛】本題考查頻率分布直方圖以及古典概型概率的計(jì)算,在頻率分布直方圖的問題中要注意:(1)每組矩形的面積等于該組數(shù)據(jù)的頻率;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論