版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省普寧市華美實驗學(xué)校2024年高一下數(shù)學(xué)期末聯(lián)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知直線和,若,則實數(shù)的值為A.1或 B.或 C.2或 D.或2.某校有高一學(xué)生450人,高二學(xué)生480人.為了解學(xué)生的學(xué)習情況,用分層抽樣的方法從該校高一高二學(xué)生中抽取一個容量為n的樣本,已知從高一學(xué)生中抽取15人,則n為()A.15 B.16 C.30 D.313.已知圓心為C(6,5),且過點B(3,6)的圓的方程為()A. B.C. D.4.方程的解集是()A. B.C. D.5.若一個數(shù)列的前三項依次為6,18,54,則此數(shù)列的一個通項公式為()A. B. C. D.6.已知等邊三角形ABC的邊長為1,,那么().A.3 B.-3 C. D.7.從裝有兩個紅球和兩個黑球的口袋里任取兩個球,那么對立的兩個事件是()A.“至少有一個黑球”與“都是黑球”B.“至少有一個黑球”與“至少有一個紅球”C.“恰好有一個黑球”與“恰好有兩個黑球”D.“至少有一個黑球”與“都是紅球”8.某快遞公司在我市的三個門店,,分別位于一個三角形的三個頂點處,其中門店,與門店都相距,而門店位于門店的北偏東方向上,門店位于門店的北偏西方向上,則門店,間的距離為()A. B. C. D.9.若一個人下半身長(肚臍至足底)與全身長的比近似為5-12(5-12≈0.618A.身材完美,無需改善 B.可以戴一頂合適高度的帽子C.可以穿一雙合適高度的增高鞋 D.同時穿戴同樣高度的增高鞋與帽子10.已知等比數(shù)列中,,數(shù)列是等差數(shù)列,且,則()A.3 B.6 C.7 D.8二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)等差數(shù)列,的前項和分別為,,若,則__________.12.設(shè)的內(nèi)角、、的對邊分別為、、,且滿足.則______.13.等差數(shù)列前9項的和等于前4項的和.若,則.14.已知函數(shù),下列說法:①圖像關(guān)于對稱;②的最小正周期為;③在區(qū)間上單調(diào)遞減;④圖像關(guān)于中心對稱;⑤的最小正周期為;正確的是________.15.若,則________.16.已知等比數(shù)列an中,a3=2,a三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面直角坐標中,圓與圓相交與兩點.(I)求線段的長.(II)記圓與軸正半軸交于點,點在圓C上滑動,求面積最大時的直線的方程.18.已知的三個內(nèi)角的對邊分別為,且,(1)求證:;(2)若是銳角三角形,求的取值范圍.19.已知向量=(sinx,cosx),=(cosx,cosx),=(2,1).(1)若∥,求sinxcosx的值;(2)若0<x≤,求函數(shù)f(x)=·的值域.20.設(shè)O為坐標原點,動點M在橢圓C上,過M作x軸的垂線,垂足為N,點P滿足.(1)求點P的軌跡方程;(2)設(shè)點在直線上,且.證明:過點P且垂直于OQ的直線過C的左焦點F.21.已知數(shù)列滿足:,,數(shù)列滿足:().(1)證明:數(shù)列是等比數(shù)列;(2)求數(shù)列的前項和,并比較與的大小.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
利用直線與直線垂直的性質(zhì)直接求解.【詳解】∵直線和,若,∴,得,解得或,∴實數(shù)的值為或.故選:C.【點睛】本題考查直線與直線垂直的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.2、D【解析】
根據(jù)分層抽樣的定義和性質(zhì)進行求解即可.【詳解】根據(jù)分層抽樣原理,列方程如下,n450+480解得n=1.故選:D.【點睛】本題主要考查分層抽樣的應(yīng)用,根據(jù)條件建立比例關(guān)系是解決本題的關(guān)鍵.3、A【解析】
在知道圓心的情況下可設(shè)圓的標準方程為,然后根據(jù)圓過點B(3,6),代入方程可求出r的值,得到圓的方程.【詳解】因為,又因為圓心為C(6,5),所以所求圓的方程為,因為此圓過點B(3,6),所以,所以,因而所求圓的方程為.考點:圓的標準方程.4、C【解析】
把方程化為,結(jié)合正切函數(shù)的性質(zhì),即可求解方程的解,得到答案.【詳解】由題意,方程,可化為,解得,即方程的解集為.故答案為:C.【點睛】本題主要考查了三角函數(shù)的基本關(guān)系式,以及三角方程的求解,其中解答中熟記正切函數(shù)的性質(zhì),準確求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.5、C【解析】
,,,可以歸納出數(shù)列的通項公式.【詳解】依題意,,,,所以此數(shù)列的一個通項公式為,故選:C.【點睛】本題考查了數(shù)列的通項公式,主要考查歸納法得到數(shù)列的通項公式,屬于基礎(chǔ)題.6、D【解析】
利用向量的數(shù)量積即可求解.【詳解】解析:.故選:D【點睛】本題考查了向量的數(shù)量積,注意向量夾角的定義,屬于基礎(chǔ)題.7、D【解析】
寫出所有等可能事件,求出事件“至少有一個黑球”的概率為,事件“都是紅球”的概率為,兩事件的概率和為,從而得到兩事件對立.【詳解】記兩個黑球為,兩個紅球為,則任取兩球的所有等可能結(jié)果為:,記事件A為“至少有一個黑球”,事件為:“都是紅球”,則,因為,所以事件與事件互為對立事件.【點睛】本題考查古典概型和對立事件的判斷,利用兩事件的概率和為1是判斷對立事件的常用方法.8、C【解析】
根據(jù)題意,作出圖形,結(jié)合圖形利用正弦定理,即可求解,得到答案.【詳解】如圖所示,依題意知,,,由正弦定理得:,則.故選C.【點睛】本題主要考查了三角形的實際應(yīng)用問題,其中解答中根據(jù)題意作出圖形,合理使用正弦定理求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.9、C【解析】
對每一個選項逐一分析研究得解.【詳解】A.103103+72B.假設(shè)她需要戴上高度為x厘米的帽子,則103175C.假設(shè)她可以穿一雙合適高度為y的增高鞋,則103+D.假設(shè)同時穿戴同樣高度z的增高鞋與帽子,則103+故選:C【點睛】本題主要考查學(xué)生對新定義的理解和應(yīng)用,屬于基礎(chǔ)題.10、D【解析】
由等比數(shù)列的性質(zhì)求得,再由等差數(shù)列的性質(zhì)可得結(jié)果.【詳解】因為等比數(shù)列,且,解得,數(shù)列是等差數(shù)列,則,故選:D.【點睛】本題主要考查等比數(shù)列與等差數(shù)列的下標性質(zhì),屬于基礎(chǔ)題.解等差數(shù)列問題要注意應(yīng)用等差數(shù)列的性質(zhì)().二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】分析:首先根據(jù)等差數(shù)列的性質(zhì)得到,利用分數(shù)的性質(zhì),將項的比值轉(zhuǎn)化為和的比值,從而求得結(jié)果.詳解:根據(jù)題意有,所以答案是.點睛:該題考查的是有關(guān)等差數(shù)列的性質(zhì)的問題,將兩個等差數(shù)列的項的比值可以轉(zhuǎn)化為其和的比值,結(jié)論為,從而求得結(jié)果.12、4【解析】
解法1有題設(shè)及余弦定理得.故.解法2如圖4,過點作,垂足為.則,.由題設(shè)得.又,聯(lián)立解得,.故.解法3由射影定理得.又,與上式聯(lián)立解得,.故.13、10【解析】
根據(jù)等差數(shù)列的前n項和公式可得,結(jié)合等差數(shù)列的性質(zhì)即可求得k的值.【詳解】因為,且所以由等差數(shù)列性質(zhì)可知因為所以則根據(jù)等差數(shù)列性質(zhì)可知可得【點睛】本題考查了等差數(shù)列的前n項和公式,等差數(shù)列性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.14、②③⑤【解析】
將函數(shù)解析式改寫成:,即可作出函數(shù)圖象,根據(jù)圖象即可判定.【詳解】由題:,,所以函數(shù)為奇函數(shù),,是該函數(shù)的周期,結(jié)合圖象分析是其最小正周期,,作出函數(shù)圖象:可得,該函數(shù)的最小正周期為,圖像不關(guān)于對稱;在區(qū)間上單調(diào)遞減;圖像不關(guān)于中心對稱;故答案為:②③⑤【點睛】此題考查三角函數(shù)圖象及其性質(zhì)的辨析,涉及周期性,對稱性和單調(diào)性,作為填空題,恰當?shù)乩脠D象解決問題能夠起到事半功倍的作用.15、【解析】
觀察式子特征,直接寫出,即可求出?!驹斀狻坑^察的式子特征,明確各項關(guān)系,以及首末兩項,即可寫出,所以,相比,增加了后兩項,少了第一項,故?!军c睛】本題主要考查學(xué)生的數(shù)學(xué)抽象能力,正確弄清式子特征是解題關(guān)鍵。16、4【解析】
先計算a5【詳解】aaa故答案為4【點睛】本題考查了等比數(shù)列的計算,意在考查學(xué)生的計算能力.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(I);(II)或.【解析】
(I)先求得相交弦所在的直線方程,再求得圓的圓心到相交弦所在直線的距離,然后利用直線和圓相交所得弦長公式,計算出弦長.(II)先求得當時,取得最大值,根據(jù)兩直線垂直時斜率的關(guān)系,求得直線的方程,聯(lián)立直線的方程和圓的方程,求得點的坐標,由此求得直線的斜率,進而求得直線的方程.【詳解】(I)由圓O與圓C方程相減可知,相交弦PQ的方程為.點(0,0)到直線PQ的距離,(Ⅱ),.當時,取得最大值.此時,又則直線NC為.由,或當點時,,此時MN的方程為.當點時,,此時MN的方程為.∴MN的方程為或.【點睛】本小題主要考查圓與圓相交所得弦長的求法,考查三角形面積公式,考查直線與圓相交交點坐標的求法,考查直線方程的求法,考查兩直線垂直時斜率的關(guān)系,綜合性較強,屬于中檔題.18、(1)證明見解析;(2)【解析】
(1)由,聯(lián)立,得,然后邊角轉(zhuǎn)化,利用和差公式化簡,即可得到本題答案;(2)利用正弦定理和,得,再確定角C的范圍,即可得到本題答案.【詳解】解:(1)銳角中,,故由余弦定理可得:,,,即,∴利用正弦定理可得:,即,,可得:,∴可得:,或(舍去),.(2),均為銳角,由于:,,.再根據(jù),可得,,【點睛】本題主要考查正余弦定理的綜合應(yīng)用,其中涉及到利用三角函數(shù)求取值范圍的問題.19、(1);(2)【解析】
(1)由向量共線得tanx=2,再由同角三角函數(shù)基本關(guān)系得sinxcosx=,即可求解;(2)整理f(x)=·=sin(2x+)+,由三角函數(shù)性質(zhì)即可求解最值【詳解】(1)∵∥,∴sinx=2cosx,tanx=2.∴sinxcosx===(2)f(x)=·=sinxcosx+cos2x=sin2x+(1+cos2x)=sin(2x+)+∵0<x≤,∴<2x+≤.∴sin(2x+)≤1∴1≤f(x)≤.所以f(x)的值域為:【點睛】本題考查三角函數(shù)恒等變換,同角三角函數(shù)基本關(guān)系式,三角函數(shù)性質(zhì),熟記公式,準確計算是關(guān)鍵,是中檔題20、(1);(2)見解析.【解析】
試題分析:(1)轉(zhuǎn)移法求軌跡:設(shè)所求動點坐標及相應(yīng)已知動點坐標,利用條件列兩種坐標關(guān)系,最后代入已知動點軌跡方程,化簡可得所求軌跡方程;(2)證明直線過定點問題,一般方法是以算代證:即證,先設(shè)P(m,n),則需證,即根據(jù)條件可得,而,代入即得.試題解析:解:(1)設(shè)P(x,y),M(),則N(),由得.因為M()在C上,所以.因此點P的軌跡為.由題意知F(-1,0),設(shè)Q(-3,t),P(m,n),則,.由得-3m-+tn-=1,又由(1)知,故3+3m-tn=0.所以,即.又過點P存在唯一直線垂直于OQ,所以過點P且垂直于OQ的直線l過C的左焦點F.點睛:定點、定值問題通常是通過設(shè)參數(shù)或取特殊值來確定“定點”是什么、“定值”是多少,或者將該問題涉及的幾何式轉(zhuǎn)化為代數(shù)式或三角問題,證明該式是恒成立的.定點、定值問題同證明問題類似,在求定點、定值之前已知該值的結(jié)果,因此求解時應(yīng)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度戶外展示柜安裝與廣告投放合同3篇
- 幼兒桌游游戲化課程設(shè)計
- 英語句子結(jié)構(gòu)的課程設(shè)計
- 熱工課程設(shè)計自我評價
- (標準員)基礎(chǔ)知識練習(共六卷)
- 幼兒園回憶過年課程設(shè)計
- 紅色精神體育課程設(shè)計
- 物流行業(yè)配送技巧分享
- 生物實驗教學(xué)案例分享計劃
- 網(wǎng)絡(luò)實驗課課程設(shè)計書
- 水庫回水計算(實用)
- 人力資源管理概論全套課件
- 伊索寓言-狗和影子課件
- 卸船機用行星減速機的設(shè)計-畢業(yè)設(shè)計
- 中班美術(shù)活動美麗的蝴蝶教案【含教學(xué)反思】
- 北師大版九年級數(shù)學(xué)上冊教學(xué)教學(xué)工作總結(jié)
- 光儲電站儲能系統(tǒng)調(diào)試方案
- (完整)小學(xué)語文考試專用作文方格紙
- 管理供應(yīng)商 供應(yīng)商績效評估
- 煙花爆竹工程設(shè)計安全規(guī)范
- 1000MW機組鍋爐過渡段T23水冷壁管檢修導(dǎo)則(征求意見稿)
評論
0/150
提交評論