版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
遼寧省本溪中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末達標檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若平面向量,滿足,,且,則等于()A. B. C.2 D.82.如圖,在平行六面體中,M,N分別是所在棱的中點,則MN與平面的位置關(guān)系是()A.MN平面B.MN與平面相交C.MN平面D.無法確定MN與平面的位置關(guān)系3.預(yù)測人口的變化趨勢有多種方法,“直接推算法”使用的公式是(),為預(yù)測人口數(shù),為初期人口數(shù),為預(yù)測期內(nèi)年增長率,為預(yù)測期間隔年數(shù).如果在某一時期有,那么在這期間人口數(shù)A.呈下降趨勢 B.呈上升趨勢 C.擺動變化 D.不變4.已知關(guān)于的不等式的解集為,則的值為()A.4 B.5 C.7 D.95.如圖,各棱長均為的正三棱柱,、分別為線段、上的動點,且平面,,中點軌跡長度為,則正三棱柱的體積為()A. B. C.3 D.6.點是空間直角坐標系中的一點,過點作平面的垂線,垂足為,則點的坐標為()A.(1,0,0) B. C. D.7.某超市收銀臺排隊等候付款的人數(shù)及其相應(yīng)概率如下:排隊人數(shù)01234概率0.10.160.30.30.10.04則至少有兩人排隊的概率為()A.0.16 B.0.26 C.0.56 D.0.748.如圖,測量河對岸的塔高AB時可以選與塔底B在同一水平面內(nèi)的兩個測點C與D,測得,,CD=30,并在點C測得塔頂A的仰角為60°,則塔高AB等于A. B. C. D.9.已知數(shù)列滿足是數(shù)列的前項和,則()A. B. C. D.10.已知函數(shù),,若成立,則的最小值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.直線x-312.已知函數(shù)一個周期的圖象(如下圖),則這個函數(shù)的解析式為__________.13.已知正三棱錐的底面邊長為6,所在直線與底面所成角為60°,則該三棱錐的側(cè)面積為_______.14.設(shè)函數(shù)的部分圖象如圖所示,則的表達式______.15.若等差數(shù)列和等比數(shù)列滿足,,則_______.16.已知,,則________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖所示,是一個矩形花壇,其中米,米.現(xiàn)將矩形花壇擴建成一個更大的矩形花壇,要求:在上,在上,對角線過點,且矩形的面積小于150平方米.(1)設(shè)長為米,矩形的面積為平方米,試用解析式將表示成的函數(shù),并確定函數(shù)的定義域;(2)當?shù)拈L度是多少時,矩形的面積最?。坎⑶笞钚∶娣e.18.求經(jīng)過直線:與直線:的交點,且分別滿足下列條件的直線方程.(Ⅰ)與直線平行;(Ⅱ)與直線垂直.19.在數(shù)1和100之間插入個實數(shù),使得這個數(shù)構(gòu)成遞增的等比數(shù)列,將這個數(shù)的乘積記作,再令.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設(shè),求數(shù)列的前項和.20.求過點且與圓相切的直線方程.21.如圖,在四棱錐中,平面,底面為菱形.(1)求證:平面;(2)若為的中點,,求證:平面平面.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
由,可得,再結(jié)合,展開可求出答案.【詳解】由,可知,展開可得,所以,又,,所以.故選:B.【點睛】本題考查向量數(shù)量積的應(yīng)用,考查學(xué)生的計算求解能力,注意向量的平方等于模的平方,屬于基礎(chǔ)題.2、C【解析】
取的中點,連結(jié),可證明平面平面,由于平面,可知平面.【詳解】取的中點,連結(jié),顯然,因為平面,平面,所以平面,平面,又,故平面平面,又因為平面,所以平面.故選C.【點睛】本題考查了直線與平面的位置關(guān)系,考查了線面平行、面面平行的證明,屬于基礎(chǔ)題.3、A【解析】
可以通過與之間的大小關(guān)系進行判斷.【詳解】當時,,所以,呈下降趨勢.【點睛】判斷變化率可以通過比較初始值與變化之后的數(shù)值之間的大小來判斷.4、D【解析】
將原不等式化簡后,根據(jù)不等式的解集列方程組,求得的值,進而求得的值.【詳解】由得,依題意上述不等式的解集為,故,解得(舍去),故.故選:D.【點睛】本小題主要考查類似:已知一元二次不等式解集求參數(shù),考查函數(shù)與方程的思想,屬于基礎(chǔ)題.5、D【解析】
設(shè)的中點分別為,判斷出中點的軌跡是等邊三角形的高,由此計算出正三棱柱的邊長,進而計算出正三棱柱的體積.【詳解】設(shè)的中點分別為,連接.由于平面,所以.當時,中點為平面的中心,即的中點(設(shè)為點)處.當時,此時的中點為的中點.所以點的軌跡是三角形的高.由于三角形是等邊三角形,而,所以.故正三棱柱的體積為.故選:D【點睛】本小題主要考查線面平行的有關(guān)性質(zhì),考查棱柱的體積計算,考查空間想象能力,考查分析與解決問題的能力,屬于中檔題.6、B【解析】
根據(jù)空間直角坐標系的坐標關(guān)系,即可求得點的坐標.【詳解】空間直角坐標系中點過點作平面的垂線,垂足為,可知故選:B【點睛】本題考查了空間直角坐標系及坐標關(guān)系,屬于基礎(chǔ)題.7、D【解析】
利用互斥事件概率計算公式直接求解.【詳解】由某超市收銀臺排隊等候付款的人數(shù)及其相應(yīng)概率表,得:至少有兩人排隊的概率為:.故選:D.【點睛】本題考查概率的求法、互斥事件概率計算公式,考查運算求解能力,是基礎(chǔ)題.8、D【解析】在中,由正弦定理得,解得在中,9、D【解析】
由已知遞推關(guān)系式可以推出數(shù)列的特征,即數(shù)列和均是等比數(shù)列,利用等比數(shù)列性質(zhì)求解即可.【詳解】解:由已知可得,當時,由得,所以數(shù)列和均是公比為2的等比數(shù)列,首項分別為2和1,由等比數(shù)列知識可求得,,故選:D.【點睛】本題主要考查遞推關(guān)系式,及等比數(shù)列的相關(guān)知識,屬于中檔題.10、B【解析】,則,所以,則,易知,,則在單調(diào)遞減,單調(diào)遞增,所以,故選B。點睛:本題考查導(dǎo)數(shù)的綜合應(yīng)用。利用導(dǎo)數(shù)求函數(shù)的極值和最值是導(dǎo)數(shù)綜合應(yīng)用題型中的常見考法。通過求導(dǎo),首先觀察得到導(dǎo)函數(shù)的極值點,利用圖象判斷出單調(diào)增減區(qū)間,得到最值。二、填空題:本大題共6小題,每小題5分,共30分。11、π【解析】
將直線方程化為斜截式,利用直線斜率與傾斜角的關(guān)系求解即可.【詳解】因為x-3所以y=33x-33則tanα=33,α=【點睛】本題主要考查直線的斜率與傾斜角的關(guān)系,意在考查對基礎(chǔ)知識的掌握情況,屬于基礎(chǔ)題.12、【解析】
由函數(shù)的圖象可得T=﹣,解得:T==π,解得ω=1.圖象經(jīng)過(,1),可得:1=sin(1×+φ),解得:φ=1kπ+,k∈Z,由于:|φ|<,可得:φ=,故f(x)的解析式為:f(x)=.故答案為f(x)=.13、【解析】
畫出圖形,過P做底面的垂線,垂足O落在底面正三角形中心,即,因為,即可求出,所以.【詳解】作于,因為為正三棱錐,所以,為中點,連結(jié),則,過作⊥平面,則點為正三角形的中心,點在上,所以,,正三角形的邊長為6,則,,,斜高,三棱錐的側(cè)面積為:【點睛】此題考查正三棱錐,即底面為正三角形,側(cè)面為等腰三角形的三棱錐,正四面體為四個面都是正三角形,畫出圖像,屬于簡單的立體幾何題目.14、【解析】
根據(jù)圖象的最高點得到,由圖象得到,故得,然后通過代入最高點的坐標或運用“五點法”得到,進而可得函數(shù)的解析式.【詳解】由圖象可得,∴,∴,∴.又點在函數(shù)的圖象上,∴,∴,∴.又,∴.∴.故答案為.【點睛】已知圖象確定函數(shù)解析式的方法(1)由圖象直接得到,即最高點的縱坐標.(2)由圖象得到函數(shù)的周期,進而得到的值.(3)的確定方法有兩種.①運用代點法求解,通過把圖象的最高點或最低點的坐標代入函數(shù)的解析式求出的值;②運用“五點法”求解,即由函數(shù)最開始與軸的交點(最靠近原點)的橫坐標為(即令,)確定.15、【解析】
設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,根據(jù)題中條件求出、的值,進而求出和的值,由此可得出的值.【詳解】設(shè)等差數(shù)列的公差和等比數(shù)列的公比分別為和,則,求得,,那么,故答案為.【考點】等差數(shù)列和等比數(shù)列【點睛】等差、等比數(shù)列各有五個基本量,兩組基本公式,而這兩組公式可看作多元方程,利用這些方程可將等差、等比數(shù)列中的運算問題轉(zhuǎn)化為解關(guān)于基本量的方程(組)問題,因此可以說數(shù)列中的絕大部分運算題可看作方程應(yīng)用題,所以用方程思想解決數(shù)列問題是一種行之有效的方法.16、【解析】
直接利用反三角函數(shù)求解角的大小,即可得到答案.【詳解】因為,,根據(jù)反三角函數(shù)的性質(zhì),可得.故答案為:.【點睛】本題主要考查了三角方程的解法,以及反三角函數(shù)的應(yīng)用,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2),.【解析】
(1)由可得,,∴.由,且,解得,∴函數(shù)的定義域為.(2)令,則,,當且僅當時,取最小值,故當?shù)拈L度為米時,矩形花壇的面積最小,最小面積為96平方米.考點:1.分式不等式;2.均值不等式.18、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)先求得直線與直線的交點坐標.根據(jù)平行直線的斜率關(guān)系得與平行直線的斜率,再由點斜式即可求得直線方程.(Ⅱ)根據(jù)垂直直線的斜率關(guān)系得與垂直的直線斜率,再由點斜式即可求得直線方程.【詳解】解方程組得,所以直線與直線的交點是(Ⅰ)直線,可化為由題意知與直線平行則直線的斜率為又因為過所以由點斜式方程可得化簡得所以與直線平行且過的直線方程為.(Ⅱ)直線的斜率為則由垂直時直線的斜率乘積為可知直線的斜率為由題意知該直線經(jīng)過點,所以由點斜式方程可知化簡可得所以與直線垂直且過的直線方程為.【點睛】本題考查了直線平行與垂直時的斜率關(guān)系,由點斜式求方程的用法,屬于基礎(chǔ)題.19、(Ⅰ)(Ⅱ)【解析】
(1)類比等差數(shù)列求和的倒序相加法,將等比數(shù)列前n項積倒序相乘,可求,代入即可求解.(2)由(1)知,利用兩角差的正切公式,化簡,,得,再根據(jù)裂項相消法,即可求解.【詳解】(Ⅰ)由題意,構(gòu)成遞增的等比數(shù)列,其中,則①②①②,并利用等比數(shù)列性質(zhì),得(Ⅱ)由(Ⅰ)知,又所以數(shù)列的前項和為【點睛】(Ⅰ)類比等差數(shù)列,利用等比數(shù)列的相關(guān)性質(zhì),推導(dǎo)等比數(shù)列前項積公式,創(chuàng)新應(yīng)用型題;(Ⅱ)由兩角差的正切公式,推導(dǎo)連續(xù)兩個自然數(shù)的正切之差,構(gòu)造新型的裂項相消的式子,創(chuàng)新應(yīng)用型題;本題屬于難題.20、直線方程為或【解析】
當直線的斜率不存在時,直線方程為,滿足題意,當直線的斜率存在時,設(shè)出直線的方程,由圓心到直線的距離等于半徑,可解出的值,從而求出方程。【詳解】當直線的斜率不存在時,直線方程為,經(jīng)檢驗,滿足題意.當直線的斜率存在時,設(shè)直線方程為,即,圓心到直線的距離等于半徑,即,可解得.即直線為.綜上,所求直線方程為或.【點睛】本題考查了圓的切線的求法,考查了直線的方程,考查了點到直線的距離公式,屬于基
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學(xué)年新教材高中物理 第三章 恒定電流 第3節(jié) 測量金屬絲的電阻率教案 粵教版必修3
- 2024-2025學(xué)年高中數(shù)學(xué) 第2章 推理與證明 2.3 數(shù)學(xué)歸納法(教師用書)教案 新人教A版選修2-2
- 知識清單21 神經(jīng)調(diào)節(jié)(3大考點+7個易錯點)高考生物一輪復(fù)習(xí)知識清單
- 2024年C語言程序設(shè)計教案編寫思考
- 革新教學(xué)法:2024年《畫漫畫》教案設(shè)計
- 探索K2教育:《千人糕》2024課件實踐分享
- 2023年西方經(jīng)濟學(xué)考點版本科打印雙面
- 2024年教育政策解讀:《教育學(xué)原理》課件編制背景
- 《棗兒》學(xué)術(shù)論文探究
- 湖南省長沙市(2024年-2025年小學(xué)五年級語文)統(tǒng)編版綜合練習(xí)(下學(xué)期)試卷及答案
- 小作坊食品安全管理制度(3篇)
- 孕期焦慮測評
- 光伏電站施工組織設(shè)計
- 全人教版四年級英語上冊期中考試知識點匯總-必背的重點
- 2023年1月高三英語試題(浙江卷)+聽力+答案+作文
- 漢字聽寫大賽匯總成語
- 體位引流課件
- 市政工程項目部管理制度及崗位職責
- 第9章-庭院生態(tài)工程
- 《特殊兒童早期干預(yù)》教學(xué)大綱
- GB/T 5456-2009紡織品燃燒性能垂直方向試樣火焰蔓延性能的測定
評論
0/150
提交評論