版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
FinanceandEconomicsDiscussionSeries
FederalReserveBoard,Washington,D.C.
ISSN1936-2854(Print)
ISSN2767-3898(Online)
FactorSelectionandStructuralBreaks
SiddharthaChibandSimonC.Smith
2024-037
Pleasecitethispaperas:
Chib,Siddhartha,andSimonC.Smith(2024).“FactorSelectionandStructuralBreaks,”FinanceandEconomicsDiscussionSeries2024-037.Washington:BoardofGovernorsoftheFederalReserveSystem,
/10.17016/FEDS.2024.037
.
NOTE:StafworkingpapersintheFinanceandEconomicsDiscussionSeries(FEDS)arepreliminarymaterialscirculatedtostimulatediscussionandcriticalcomment.TheanalysisandconclusionssetfortharethoseoftheauthorsanddonotindicateconcurrencebyothermembersoftheresearchstafortheBoardofGovernors.ReferencesinpublicationstotheFinanceandEconomicsDiscussionSeries(otherthanacknowledgement)shouldbeclearedwiththeauthor(s)toprotectthetentativecharacterofthesepapers.
FactorSelectionandStructuralBreaks
SiddharthaChiba,SimonC.Smithb
aOlinSchoolofBusiness,WashingtonUniversityinSt.LouisbFederalReserveBoard
Draft:May31,2024
Abstract
Wedevelopanewapproachtoselectriskfactorsinanassetpricingmodelthatallowsthesettochangeatmultipleunknownbreakdates.UsingthesixfactorsdisplayedinTable1since1963,wedocumentamarkedshifttowardsparsimoniousmodelsinthelasttwodecades.Priorto2005,fiveorsixfactorsareselected,butjusttwoareselectedthereafter.Thisfindingoffersasimpleimplicationforthefactorzooliterature:ignoringbreaksdetectsadditionalfactorsthatarenolongerrelevant.Moreover,allomittedfactorsarepricedbytheselectedfactorsineveryregime.Finally,theselectedfactorsoutperformpopularfactormodelsasaninvestmentstrategy.
Keywords:Modelcomparison,Factormodels,Structuralbreaks,Anomaly,Bayesiananal-ysis,Discountfactor,Portfolioanalysis,Sparsity.
JELclassifications:G12,C11,C12,C52,C58
Emailaddresses:chib@wustl.edu(SiddharthaChib),simon.c.smith@(SimonC.Smith)
WethankDanieleBianchiandAndyNeuhierl.Anyremainingerrorsareourown.TheviewsexpressedinthispaperarethoseoftheauthorsanddonotnecessarilyreflecttheviewsandpoliciesoftheBoardofGovernorsortheFederalReserveSystem.CenterforResearchinSecurityPricesdatawereobtainedbySiddharthaChibunderthepurviewofWashingtonUniversitylicenses.
1
1.Introduction
“USsmall-capstocksaresufferingtheirworstrunofperformancerelativetolargecompaniesinmorethan20years[...]TheRussell2000indexhasrisen24%sincethebeginningof2020,laggingtheS&P500’smorethan60%gainoverthesameperiod.Thegapinperformanceupendsalong-termhistoricalnorminwhichfast-growingsmall-capshavetendedtodeliverpunchierreturnsforinvestorswhocanstomachthehighervolatility.
”1
(FinancialTimes,2024)
Theempiricalliteratureonassetpricinghasproposedahugenumberoffactorsthatclaimtoexplainthecross-sectionofexpectedstockreturns(
Cochrane
2011
).Morerecently,thefieldhasbeendealingwithhowtohandlethisproliferationoffactors.Variouspotentialsolutionshavebeenoffered(
Fengetal.
2020
).
Thispaperpresentsanintuitivelysimplepointofviewthathassomehowbeenoverlookedintheliterature.Ifthesetoffactorsthatexplainthecrosssectionofexpectedreturnsisvaryingovertime,itiscriticaltoaccountforthisfeaturewhenevaluatingwhichfactorsarerelevantatanygiventime
.2
Otherwise,usingallavailablehistoricaldatawilltendtopickupfactorsthatwereimportantatsomepointinthepastbutarenotriskfactorsatpresent.Asasimpleexample,imaginethatonlytwofactorsarerelevantforthefirsthalfofthesampleandthattwodifferentfactorsarerelevantinthesecondhalf.Thecommonapproachintheliteratureofusingallthehistoricaldatawilltendtosuggestthatallfourfactorsarerelevantfortheentiresample,wheninfactnomorethantwoarerelevantatanygiventime.Thismaypartlyexplaintheproblemofthe“factorzoo”(
Harveyetal.
2016
;
1ThisquoteisfromaMarch27,2024FinancialTimesarticleentitled‘USsmall-capssufferworstrunagainstlargerstocksinmorethan20years.’
2Forexample,thepublicationeffectof
Schwert
(2003),and/ortheadaptiveefficientmarkethypothesis
of
Lo
(2004),maycausethesetofriskfactorstochange
.Thesetofriskfactorsmayalsochangedue,forexample,tothetechnologicalrevolutioninfinancialmarketstowardstheendofthetwentiethcentury,shiftingmonetarypolicyregimesthatledtotheanchoringofinflationexpectations,orregulatorychanges.
2
Houetal.
2020
),aswellasthedecliningperformanceofriskfactorsinacomprehensivesetofanomalies(
McLeanandPontiff
2016
).Therefore,itisimportanttoconsidertimevariationwhenselectingfactors.
Ifoneknewthetimeatwhichthesetoffactorschanges,onecoulddiscardtheoldirrel-evantdatawithasubsamplesplit.Inreality,however,thisdateisnotknownandthereforemustbeestimated
.3
Furthermore,thelongerthesampleperiodunderconsideration,themorelikelyitisthattheremaybemultipletimesatwhichthesetchanges,whichfurthercomplicatestheproblem.Thissettingistechnicallychallengingbecauseoneneedstoes-timateboththetimesatwhichthesetofrelevantfactorschangesandthesetofrelevantfactorswithineachsubperiod.Inotherwords,boththeassetpricingmodelandtheparame-tersofthatmodelchange
.4
Inthispaper,weproposeasolutiontothischallengingproblembydevisingthefirstmethod(Bayesianorfrequentist)thatcansimultaneouslyestimateboththetimesatwhichthemodelchangesandhowtheparametersofthemodelchange,takingtheguessworkoutofhowtodeterminethesubsamplesplits(orregimes).
Ourmethodologygeneralizestheframeworkof
ChibandZeng
(2020)
–whodevelopedaBayesianmodelselectionapproachfortime-invariantfactorselection–byblendingitwiththeBayesianbreakpointapproachinthecontextofmodeluncertaintydevelopedby
Chib
(2024),producingasingleunifiedframeworkwhichestimatestheselectedriskfactorsand
allowsthisselectedsettochangeatmultipleunknownbreakdates.NotethataBayesianapproachiswellsuitedtothisproblembecauseitcanallowforbothabruptandgradualchanges,dependingontheuncertaintysurroundingthebreakdate.ABayesianapproach
3
Greenetal.
(2017),forexample,imposeapredeterminedsubsamplesplitintheearly2000sandfind
thatthenumberofrelevantcharacteristicshasdeclinedovertime.
4Thissettingismorecomplexthanstandardbreakpointproblemsinwhichthemodelparametersshiftafterabreakbutthemodelitself(i.e.theselectedfactors)remainsunchanged.Awidelyappliedapproachforthissettingwasdevelopedin
Chib
(1998),firstappliedinthefinancesettingby
P′astorandStambaugh
(2001)andsubsequentlyinmanyotherpapers
.Standardbreakpointproblemshavebeenappliedtoarange
ofissuesinempiricalassetpricing,suchasreturnpredictability(Viceira
1997;
LettauandVanNieuwerburgh
2008;
Rapachetal.
2010;
SmithandTimmermann
2021
),estimatingtime-varyingriskpremia(
P′astorand
Stambaugh
2001;
SmithandTimmermann
2022),anddatingtheintegrationofworldequitymarkets(Bekaert
etal.
2002
).
3
alsoinherentlyprotectsagainstproblemsassociatedwithmultipletests(
Kozaketal.
2020
;
Jensenetal.
2023
;
Bryzgalovaetal.
2023
).Weperformanexhaustivesearchacrossallpossibleassetpricingmodelsimpliedbythestartingsetofriskfactorsandallpossiblebreakdatesforagivennumberofbreaks,identifyingtheoptimalsubsetofpotentialfactorsthatcanpricemost(ifnotall)oftheremainingfactorsineachregime
.5
Ourexhaustivesearchcircumventstheriskofgettingstuckatlocalmaximiathatisassociatedwithstochasticsearchalgorithms
.6
Inourempiricalanalysis,wefocusonthesix-factormodelof
FamaandFrench
(
2018
)
.7
UsingmonthlydatafromJuly1963throughDecember2023,ourmethodidentifiesthreebreakscorrespondingtoaregimelastingfor15yearsonaverage
.8
ThebreaksoccurinMarch1975,October1995,andSeptember2005
.9
Thesetofriskfactorschangesaftereachofthesebreaks.Atleastfivefactorsareselectedinthefirstthreeregimes(upto2005),whileonlytwofactors(marketandprofitability)areselectedinthefinalregime(post-2005)
.10
Incontrast,thepreferredmodelwhenusingallhistoricaldataisafour-factormodelthatexcludessizeandvaluewhichshowsthatfailingtodiscardpre-breakdatacanleadtoariskfactorsetbeingselectedthatisnottherelevantoneforpricinginthecurrentregime
.11
5Ourmethodalsoperformsinferenceoverthenumberofbreaks.
6Whiletheconventionalapproachtotestthepricingabilityofrisk-factorsistousevarioustestassetsorportfolios,following
ChibandZeng
(2020)weleveragetheintuitionthatifasubsetoftheavailablefactorsare
foundtoberiskfactors,thenthosefactors,byvirtueofbeingriskfactors,shouldpricethecomplementarysetofnonriskfactors.
7Themodelscanisthereforeover63models,includingthepopularrisk-factorcollectionssuchasthe3-and5-factorFama-Frenchmodels,butitalsoincludesallothercombinationsofrisk-factorsthathavenotpreviouslybeenconsidered.
8Weconsiderothernumbersofbreaks,butfindthreetobeoptimal.
9Thebreakin1975correspondstotheoilpriceshocksofthe1970sandthecorrespondinghighinflation-aryperiodthatwasonlystoppedwhenasharpcontractionarymonetarypolicyregimewassubsequentlyimplemented.October1995coincideswiththeInternetrevolutionandthetechboomontheNASDAQ
(Griffinetal.
2011
).Thisbreakalsocoincideswithaperiodofdramaticchangesinmarketefficiencythathasbeendocumentedby
Chordiaetal.
(2011)
.TheSeptember2005breakcorrespondstoalittlebeforetheonsetoftheGlobalFinancialCrisis.
10Allbutthesizefactorareselectedinthefirstregime(1963-1975),allsixfactorsareselectedinthesecond(1975-1995),andallbutthevaluefactorareselectedinthethird(1995-2005).
11Thisselectedmodelisunabletopriceoneoftheomittedfactors–size–usingthewholesampleofavailabledata,highlightingitsshortcomings.Furthermore,usingtheentiredatasample,ourapproach
4
Moreover,themediannumberoffactorsselectedinthebestperformingtenmodelsin
thethreeregimesupto2005isfive,butthisfallsto2.5inthefinalregime.Thisclearlyindicatesashifttomoreparsimoniousmodelsinthemostrecenttwodecades
.12
Infact,theCapitalAssetPricingModel(CAPM)–whichperformspoorlyupto2005–isinthetoptenmodelsafter2005andoutperformsthe3-and5-factormodelsofFama-French(andbothofthosemodelsplusmomentum).
Ineveryregime,eachoftheomittedfactorsispricedbytheselectedfactors,suggestingthattheyarespannedbythesmallersubsetofselectedfactorsandcanthereforebeconfi-dentlyexcluded.Post-2005,constructingthetangencyportfoliothatconsistsoftheselectedfactorsandtheindividualstocksthatarenotpricedbythosefactorsgeneratesaSharperatioof2.74.ThisismuchhigherthanthecorrespondingSharperatios(whichrangefrom0.87to1.82)generatedfromthe3-and5-factormodelsofFama-French,thesametwomodelsplusmomentum,andtheCAPM.Thetworiskfactorsthatourprocedurehasisolatedsince2005–marketandprofitability–captureimportantsystematicrisks.Theroleofthemarketfactorasasystematicriskfactorisarguablyunquestioned.Theprofitabilityfactorcapturesthepartofthecrosssectionofexpectedreturnsthatcovarieswithprofitability.Inaddition,ourmethodologywouldbeusefulfordetectinganychangeinthecurrentsetofriskfactorsinthefuture.
Finally,ourmethodologyprovidesregime-specificestimatesoffactorriskpremiaandtheirpriceofrisk
.13
Mountingempiricalevidenceofsizeableriskpremiaassociatedwiththesefactorshasimportantimplicationsforinvestmentstrategiesandhasmarkedlychangedtheinvestmentlandscape,leadingtotheproliferationofmutualfundsspecializingincertaininvestmentstylessuchassmallcapsorvaluestocks.Theappealofsuchstrategiesisnot
revealsthatthemomentumfactorisnotpricedbytheFama-French5-factormodel;andthemomentum,investment,andprofitabilityfactorsarenotpricedbytheFama-French3-factormodel.
12
Kellyetal.
(2019)useInstrumentedPrincipalComponentsAnalysistodocumentthatjustfivelatent
factorscanoutperformexistingfactormodels.
13Asmallsubsetofstudiesthatestimatetime-varyingriskpremiainclude
FersonandHarvey
(1991);
Freybergeretal.
(2020),
Guetal.
(2020),
Gagliardinietal.
(2016),
AngandKristensen
(2012),and
Adrian
etal.
(2015)
.
5
onlydependentonthemagnitudeoftheassociatedriskpremia,butalsoonthestabilityof
theirriskpremiaovertime
.14
Wefindcleartime-variationintheriskpremiaforallsixfactorssince1963.Forexample,thevaluepremiumwas5.6%from1963to1975butdecreasedto4.3%from1975to1995(
FamaandFrench
2021
).Since1995,thevaluefactorhasnotbeenselectedasariskfactor.TheimpliedweightsonthevaluefactorinthemaximumSharperatioportfoliothereforedeclinedfrom18percent(1963-1975)to15percent(1975-1995)andhavebeenzerosince.Thisindicatesthathighallocationstovaluestockshavebecomenotablylessattractiveovertime.
Bessembinderetal.
(2021)estimatefactorriskpremiausingafixed60-monthrolling
windowanddocumentcleartime-variationinthenumberoffactorsselectedovertime.However,asweshowinourempiricalanalysis,arollingwindowleadstofactorsenteringandexitingtheSDFveryfrequently,sometimesonamonthlybasis.Theeconomicmotivationforthisbehavior,however,isdifficulttojustify.Thisiswhyaformalmethodisneededtoidentifythesetofriskfactorsthatisstablewithinaregime,butisallowedtoshiftoccasionallyovertime.Wepresentthefirstapproach(eitherBayesianorfrequentist)todoso
.15
Therestofthepaperisorganizedasfollows.InSection2wedetailourmethodology.InSection3wepresentevidenceofbreaksandtheregime-specificselectedfactorsandtheirriskpremiaestimates.Section4hasthepricingperformanceandinvestmentimplicationsofourselectedfactorcollection,andSection5concludes.
14Factorpremiamaytime-varyduetoinvestorsdifferinginsophisticationorinvestmentobjectives,en-ablingthemarginalinvestortodifferacrossstocksandovertimeforagivenstock.Individualinvestorscanformmean-varianceportfolios,whileothersmaypursueverylargepayoffs.Someinvestorsmaypursue“buy-and-hold”strategies,andothersmayperiodicallyrebalancetotargetcertainweights.
15
Bianchietal.
(2019)alsodocumentevidenceoftime-varyingsparsityinfactormodels
.
6
2.Methodology
Wenowsetouttheeconomicmotivationforbreaksintheriskfactormodel.Then,tobuildintuition,weexplainhowthemethodologyworksfortheno-breakandsingle-breakcases,beforeexplainingourmethodologyforthemostgeneralcaseinwhichthesubsetofriskfactorscanshiftacrossanunknownnumberofbreaksthatoccuratunknowntimes.Finally,wedetailourpriorspecification.
2.1.EconomicSourcesofBreaksintheFactorModel
Formally,supposethatforatimeseriessamplefromt=1,...,T,wehavedata{ft},t≤TonasetofK(potential)riskfactors.Supposethatthestochasticdiscountfactor(SDF)attimetisgivenby
Mt=1?b′(ft?λ)
wherebisthevectorofmarketpricesoffactorrisksandλisthevectoroffactorrisk-premia.Inanenvironmentwheretheunderlyingfirm-levelproductionfunctionissubjecttobreaks,duetotechnologicalinnovations,itismoreappropriatetoassumethatfirm-levelprofitabilitywoulddependonatime-varyingsetoffirm-levellaggedcharacteristics.Inthissituation,theSDFwouldbemoreappropriatelycharacterizedbyatime-varyingSDF
Mt=1?b(ft?λt)
wherethemarketpricesandfactorrisk-premiaaretime-varying.Ifweimaginethatsomeofthelaggedcharacteristicsthatdeterminefirm-levelprofitabilityceasetobesignificantforperiodsoftimeduetochangesinpersistentshocks(innovations)toproduction,thiswouldimplythatsomeoftheelementsinthemarketpricevectorbtwouldbezeroandthecorrespondingelementsofftwoulddropoutoftheSDF,i.e.,ceasetoberiskfactors.
7
Todescribethissituation,letxt?ftdenoteasubsetofftwithnon-zeromarketpricesoffactorrisks.Supposethatthemarketpricesbtchangeatunknownbreakdates
1<t<t<···<t<T(1)
wherem(thenumberofbreaks)isalsoanunknownparameter.Inparticular,adifferentsetofriskfactorsenterstheSDFineachregimeandthusthereare(m+1)riskfactorsets
'''
(''xt≤t
''xt?1<t≤t
''
('x+1t<t≤T.
Theobjectivesoftheanalysisaretofind
?thenumberofbreaksm∈{0,1,2,...,M}
?thetimingofthebreaks,t,...,t
?andtheriskfactorsineachregimex,...,x+1.
Wenowoutlinetheframeworkdevelopedby
ChibandZeng
(2020)tofindriskfactorsin
theabsenceofbreaks.Wethengeneralizetheirframeworktofindriskfactorswithasinglebreakinthemarketpricevector(tohelpbuildintuition)andthenconsidertheextensiontomultiplebreaks(whichwesubsequentlytaketothedata).
2.2.Nobreaks
ChibandZeng
(2020)developaBayesianmodelscanningapproachtodeterminewhich
subsetofpotentialriskfactorsenterstheSDF.Todothis,theyexploitthefactthatasset
8
pricingtheoryplacesrestrictionsonthejointdistributionoffactorsthatentertheSDFand
thosethatdonot.Onekeyrestrictionisthatthenon-riskfactorsshouldbepricedbytheriskfactors.Onecanthereforeconstructallpossibledecompositionsofthejointdistributionoffactorsintermsofamarginaldistributionoftheriskfactorsandaconditionaldistributionofthenon-riskfactors(imposingthepricingrestrictiononthelatter)anddeterminebyBayesianmarginallikelihoodswhichsuchdecompositionisthebest
.16
Theriskfactorsinthatbestdecompositionarethentakentobetheriskfactorsbestsupportedbythedata.
Toisolatethebestsetofriskfactors,considerallpossiblesplitsofftintoxt,theriskfactors,andyt,thenon-riskfactors.ThesesplitsproducemodelsthatweindicatebyMj,forj=1,...,J=2K?1.Attimet,thedatageneratingprocessunderMjisgivenby
xj,t=λj+uj,t
yj,t=Γjxj,t+εj,t,t=1,...,T,(3)
wheretheerrorsaredistributedasmultivariateGaussian
uj,t~N(0,?j),εj,t~N(0,Σj).(4)
Lettheunknownparametersinthismodelbedenotedby
θj=(λj,?j,Γj,Σj).(5)
Notethateachofthesemodelshasadistinctsetofriskfactorsandadistinctsetofparam-eters.
Apartfromλj,theprioroftheparameters?j,Γj,Σjarederivedbychange-of-variablefromasingleinverseWishartpriorplacedonthematrix?jinthemodelwhereallfactors
16MarginallikelihoodsareBayesianobjectsthatarecalculatedbyintegratingouttheparametersfromthesamplingdensitywithrespecttotheprioroftheparameters.
9
arerisk-factors.ThehyperparametersofthissingleinverseWishartdistribution,andthoseofthemodel-specificλj,arecalculatedfromatrainingsample(whichwetaketobethefirst15%ofthesampledata).Thetrainingsampledataaresubsequentlydiscarded,whichmeansthatitisnotusedforestimationormodelcomparisonpurposes.
Letπ(θj)denotetheprioronθj.Then,themarginallikelihoodofMjisgivenby
marglik(f|Mj)=∫N(xj|λj,?j)N(yj|Γjxj,Σj)dπ(θj),j≤J.(6)
Theseareclosedformasshownin
Chibetal.
(2020)
.However,theirapproachassumesthatthesetofriskfactorsistime-invariant.
2.3.Singlebreak
Assumefornowthecaseofasinglebreak.Thisbreakoccursatanunknownlocationtthat
separatesthesampledataintoregimess∈{1,2}.Asetofriskfactors(x)enterstheSDF
inthefirstregime(fromtimeperiodst=1,...,t)andanotherset(x)entersinthesecond
regime(fromtimeperiodst=t+1,...,T)
.17
Theobjectiveistoestimatethetimingof
thebreak(t)andtheidentitiesoftheriskfactorsinthefirstregime(x)andthesecond
(x)regime.
Toinferthebreakdate,wefocusonthequantity
marglik(f1,t,ft+1,T|t)(7)
whichisthemarginallikelihoodofthedatasegmentedbythebreakdate.Wecalculatethisquantityonalargegridofpossiblebreakdatesandchoosethebreakdatewiththelargestvalueofthismarginallikelihood.
17Theriskfactorsetisstablewithineachregime.
10
Theproblemincalculatingtheprecedingquantityisthatwedonothavethedata-
generatingprocess(DGP)oneithersideofthesplit.Inotherwords,wedonotknowtheidentityofriskfactorsbeforeandafterthesplit.Todealwiththistwo-waymodeluncertainty,weconsiderallpossibledivisionsofftintoxtandyt,oneithersideoft.Ontheleft,wedenotethemodelsbyMj,1andontherightbyMk,1,for(j,k)=1,...,J=2K?1.Whenj=kthesplitsareidenticalbuttheparametersofthemodelaredifferent.JustaswedidinEquation(
3
),thejthmodelinregimes,s=1,2takestheform
xj,t,s=λj,s+uj,t,s
yj,t,s=Γj,sxj,t,s+εj,t,suj,t,s~N(0,?j,s)
εj,t,s~N(0,Σj,s),t∈Ts,1,s=1,2,(8)
whereT1,1=(1,2,...,t)andT2,1=(t+1,...,T).Wedenotetheunknownparametersinthesemodelsbyθj,s=(λj.s,?j,s,Γj,s,Σj,s).Notethateachofthesemodelshasadifferentsetofriskfactorsandadistinctsetofparameters,andbecausewehaveabreak,theseparametersdifferbetweenregimes.
Lettingπ(θj,s)denotetheprioronθj,s,themarginallikelihoodofMj,sisgivenby
marglik(fs,m|Mj,s,t)
=∫N(xj,t,s|λj,s,?j,s)N(yj,t,s|Γj,sxj,t,s,Σj,s)dπ(θj,s),j≤J,s=1,2(9)
whichwecalculatebythemethodof
Chib
(1995a)
.
NowbyextendingtheargumentandmarginalizationthemarginallikelihoodinEquation
11
(7)canbewrittenas
marglik(f1,t,ft+1,T|t)=marglik(f1,t,ft+1,T|Mj,1,Mk,1,t)Pr(Mj,1)Pr(Mk,1)
(10)
=marglik(f1,t|Mj,1,t)marglik(ft+1,T|Mk,2,t)(11)
whereinthesecondlinewehaveassumedequalpriorprobabilitiesofmodelsandthefactthatthejointfactorsintoindependentcomponentsgiventhemodels.Ineffect,whatwedoispaireachoftheJpossiblemodelsinthefirstregimewitheachpossiblemodelinthesecondandthenmarginalizeoverallpossiblesuchpairings.
Werepeattheabovecalculationforeverypossiblebreakdate.Thebreakdateandtwocollectionsofregime-specificriskfactorsbestsupportedbythedataarethosewiththehighestmarginallikelihood.
2.4.Multiplebreaks
Withmultiplebreaks,weperformthesamemarginallikelihoodcalculationasinthesinglebreakapproach,butthistime,givenmbreaks,wecalculatethemarginallikelihoodofthedatasegmentedbythembreaks:
marglik(f1,m,...,fm+1,m|t1,...,tm).(12)
WecalculatethisquantityforeverypossiblecombinationofthembreaksandhenceeverypossiblecombinationoftheJmodelsineachofthem+1regimes.
Letthetimepointsinthe(m+1)regimesof[1,T]inducedbythesembreakdatesbe
12
denotedbythesets
Ts,m={t:ts?1<t≤ts},s=1,...,m+1.(13)
LetthedataonthefactorsinTs,mbegivenby
fs,m={ft:ts?1<t≤ts},s=1,...,m+1.(14)
Onceagain,weconsiderallpossiblesplitsofftintoxtandyt,ineachofthem+1regimes.Forregimess=1,...,m+1,thesesplitsproducemodelsthatweindicatebyMj,sforj=1,...,J=2K?1.Attimet,inregimes,thedatageneratingprocessunderMj,sisgivenby
xj,t,s=λj,s+uj,t,s
yj,t,s=Γj,sxj,t,s+εj,t,suj,t,s~N(0,?j,s)
εj,t,s~N(0,Σj,s),t∈Ts,m.(15)
Denotingtheunknownparametersinthesemodelsbyθj,s=(λj,s,?j,s,Γj,s,Σj,s),themarginallikelihoodofMj,sisgivenby
=∫N(xj,t,s|λj,s,?j,s)N(yj,t,s|Γj,sxj,t,s,Σj,s)dπ(θj,s),j≤J,s=1,...,m+1(16)
whichwecalculatebythemethodof
Chib
(1995a)
.
Thenextstepistocalculatethemarginallikelihoodofallthedataforgivenpairingsofmodelsfromeachofthem+1regimes.ThereareJ(m+1)suchpairingsinallregimes.The
13
marginallikelihoodinEquation(
12
)canbewrittenas
marglik(f1,m,...,fm+1,m|Mj1,1,Mj2,1,...,MjJ,1,...,Mj1,m+1,Mj2,m+1...,MjJ,m+1,t1,...,tm)
Wecangetthedesiredmarginallikelihoodbysummingtherighthandsideoverallpossiblepairingsofmodels.Ifm=3andJ=63,asinoneofourcasesweconsider,therearemorethan15millionsuchmodelcombinations.Thus,
marglik···jmarglik
(18)
Thisisthemarginallikelihoodforthebreakdatest1,...,tm
.18
ThecalculationisrepeatedforallpossiblelocationsofthembreaksandallpossiblecombinationsoftheJmodelsacrossthecorrespondingm+1regimes.Forthisassumednumberofmbreaks,theoptimalbreak
datest,...,tandthem+1collectionofregime-specificriskfactorsarethosethathavethe
highestmarginallikelihood.
Finally,werepeatthiscalculationfordifferentnumbersofbreaksm∈{0,1,2,...,M}.
Theopt
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年礦業(yè)權(quán)抵押融資合同示范3篇
- 二零二五年新型環(huán)保欄桿研發(fā)、生產(chǎn)安裝合同3篇
- 二零二五版礦業(yè)權(quán)轉(zhuǎn)讓與安全生產(chǎn)監(jiān)管服務(wù)合同集3篇
- 二零二五版建筑工程BIM模型優(yōu)化與交付合同3篇
- 二零二五年混凝土施工安全生產(chǎn)責(zé)任書合同3篇
- 二零二五版掛靠出租車綠色出行獎勵合同3篇
- 提前終止2025年度租賃合同2篇
- 商鋪售后返租合同糾紛的司法解釋與實踐(2025年版)2篇
- 二零二五版畜禽養(yǎng)殖合作經(jīng)營合同書3篇
- 二零二五年度廢舊玻璃回收利用合同書3篇
- 電磁閥培訓(xùn)(精選)課件
- A彌漫大b細胞淋巴瘤護理查房
- 維保移交協(xié)議范本
- 初一上學(xué)期期末測試卷英語
- 上海沃陸變頻器VL600型變頻器說明書概要
- 2023年高考物理一輪復(fù)習(xí):拋體運動與圓周運動(附答案解析)
- VRV空調(diào)技術(shù)要求和質(zhì)量標準
- 第二講VSP地震勘探
- 干砌石護坡工程施工組織設(shè)計方案
- 物業(yè)品質(zhì)提升ppt課件
- -烏兔太陽擇日法表
評論
0/150
提交評論