版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南省林州市林濾中學2024屆高一下數(shù)學期末聯(lián)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等差數(shù)列的前項和為,且,則滿足的正整數(shù)的最大值為()A.16 B.17 C.18 D.192.在△ABC中,若asinA+bsinB<csinC,則△ABC是()A.鈍角三角形 B.直角三角形 C.銳角三角形 D.都有可能3.已知函數(shù)在區(qū)間上至少取得2次最大值,則正整數(shù)t的最小值是()A.6 B.7 C.8 D.94.已知向量滿足:,,,則()A. B. C. D.5.若直線被圓截得弦長為4,則的最小值是()A.9 B.4 C. D.6.用斜二測畫法畫一個邊長為2的正三角形的直觀圖,則直觀圖的面積是:A. B. C. D.7.函數(shù)f(x)=sin(ωx+π4)(ω>0)的圖象在[0,πA.(1,5) B.(1,+∞) C.[8.袋子中有大小、形狀完全相同的四個小球,分別寫有“和”、“諧”、“?!?、“園”四個字,有放回地從中任意摸出一個小球,直到“和”、“諧”兩個字都摸到就停止摸球,用隨機模擬的方法估計恰好在第三次停止摸球的概率。利用電腦隨機產(chǎn)生到之間取整數(shù)值的隨機數(shù),分別用,,,代表“和”、“諧”、“校”、“園”這四個字,以每三個隨機數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下組隨機數(shù):由此可以估計,恰好第三次就停止摸球的概率為()A. B. C. D.9.下列說法不正確的是()A.空間中,一組對邊平行且相等的四邊形是一定是平行四邊形;B.同一平面的兩條垂線一定共面;C.過直線上一點可以作無數(shù)條直線與這條直線垂直,且這些直線都在同一個平面內(nèi);D.過一條直線有且只有一個平面與已知平面垂直.10.若變量滿足約束條件則的最小值等于()A. B. C. D.2二、填空題:本大題共6小題,每小題5分,共30分。11.我國高鐵發(fā)展迅速,技術(shù)先進.經(jīng)統(tǒng)計,在經(jīng)停某站的高鐵列車中,有10個車次的正點率為0.97,有20個車次的正點率為0.98,有10個車次的正點率為0.99,則經(jīng)停該站高鐵列車所有車次的平均正點率的估計值為___________.12.如圖,直三棱柱中,,,,外接球的球心為О,點E是側(cè)棱上的一個動點.有下列判斷:①直線AC與直線是異面直線;②一定不垂直;③三棱錐的體積為定值;④的最小值為⑤平面與平面所成角為其中正確的序號為_______13.如圖所示,正方體的棱長為3,以其所有面的中心為頂點的多面體的體積為_____.14.函數(shù)的單調(diào)遞減區(qū)間是______.15.函數(shù)的定義域為__________;16.在平面直角坐標系中,定義兩點之間的直角距離為:現(xiàn)有以下命題:①若是軸上的兩點,則;②已知,則為定值;③原點與直線上任意一點之間的直角距離的最小值為;④若表示兩點間的距離,那么.其中真命題是__________(寫出所有真命題的序號).三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知橢圓C:x2a2+y2b2=1(a>b>0)的兩個焦點分別為F1,F(xiàn)2,離心率為12,過F1的直線l(1)求橢圓C的方程;(2)若直線y=kx+b與橢圓C分別交于A,B兩點,且OA⊥OB,試問點O到直線AB的距離是否為定值,證明你的結(jié)論.18.某企業(yè)生產(chǎn)一種產(chǎn)品,質(zhì)量測試分為:指標不小于為一等品;指標不小于且小于為二等品;指標小于為三等品。其中每件一等品可盈利元,每件二等品可盈利元,每件三等品虧損元?,F(xiàn)對學徒甲和正式工人乙生產(chǎn)的產(chǎn)品各件的檢測結(jié)果統(tǒng)計如下:測試指標甲乙根據(jù)上表統(tǒng)計得到甲、乙生產(chǎn)產(chǎn)品等級的頻率分別估計為他們生產(chǎn)產(chǎn)品等級的概率。求:(1)乙生產(chǎn)一件產(chǎn)品,盈利不小于元的概率;(2)若甲、乙一天生產(chǎn)產(chǎn)品分別為件和件,估計甲、乙兩人一天共為企業(yè)創(chuàng)收多少元?(3)從甲測試指標為與乙測試指標為共件產(chǎn)品中選取件,求兩件產(chǎn)品的測試指標差的絕對值大于的概率.19.從高三學生中抽出50名學生參加數(shù)學競賽,由成績得到如圖所示的頻率分布直方圖.利用頻率分布直方圖求:(1)這50名學生成績的眾數(shù)與中位數(shù);(2)這50名學生的平均成績.(答案精確到0.1)20.某百貨公司1~6月份的銷售量與利潤的統(tǒng)計數(shù)據(jù)如下表:月份123456銷售量x(萬件)1011131286利潤y(萬元)222529261612附:(1)根據(jù)2~5月份的統(tǒng)計數(shù)據(jù),求出關(guān)于的回歸直線方程(2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差均不超過萬元,則認為得到的回歸直線方程是理想的,試問所得回歸直線方程是否理想?(參考公式:,)21.的內(nèi)角的對邊分別為,已知.(1)求;(2)若為銳角三角形,且,求面積的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
先由,得到,,,公差大于零,再由數(shù)列的求和公式,即可得出結(jié)果.【詳解】由得,,,,所以公差大于零.又,,,故選C.【點睛】本題主要考查等差數(shù)列的應(yīng)用,熟記等差數(shù)列的性質(zhì)與求和公式即可,屬于??碱}型.2、A【解析】
由正弦定理化已知條件為邊的關(guān)系,然后由余弦定理可判斷角的大?。驹斀狻俊遖sinA+bsinB<csinC,∴,∴,∴為鈍角.故選A.【點睛】本題考查正弦定理與余弦定理,考查三角形形狀的判斷,屬于基礎(chǔ)題.3、C【解析】
先根據(jù)三角函數(shù)的性質(zhì)可推斷出函數(shù)的最小正周期為6,進而推斷出,進而求得t的范圍,進而求得t的最小值.【詳解】函數(shù)的周期T=6,則,∴,∴正整數(shù)t的最小值是8.故選:C.【點睛】本題主要考查三角函數(shù)的周期性以及正弦函數(shù)的簡單性質(zhì),屬于基礎(chǔ)題.4、D【解析】
首先根據(jù)題中條件求出與的數(shù)量積,然后求解即可.【詳解】由題有,即,,所以.故選:D.【點睛】本題主要考查了向量的模,屬于基礎(chǔ)題.5、A【解析】
圓方程配方后求出圓心坐標和半徑,知圓心在已知直線上,代入圓心坐標得滿足的關(guān)系,用“1”的代換結(jié)合基本不等式求得的最小值.【詳解】圓標準方程為,圓心為,半徑為,直線被圓截得弦長為4,則圓心在直線上,∴,,又,∴,當且僅當,即時等號成立.∴的最小值是1.故選:A.【點睛】本題考查用基本不等式求最值,解題時需根據(jù)直線與圓的位置關(guān)系求得的關(guān)系,然后用“1”的代換法把湊配出可用基本不等式的形式,從而可求得最值.6、C【解析】分析:先根據(jù)直觀圖畫法得底不變,為2,再研究高,最后根據(jù)三角形面積公式求結(jié)果.詳解:因為根據(jù)直觀圖畫法得底不變,為2,高為,所以直觀圖的面積是選C.點睛:本題考查直觀圖畫法,考查基本求解能力.7、C【解析】
結(jié)合正弦函數(shù)的基本性質(zhì),抓住只有一條對稱軸,建立不等式,計算范圍,即可.【詳解】當x=π4時,wx+π4=π4w+π4,當【點睛】考查了正弦函數(shù)的基本性質(zhì),關(guān)鍵抓住只有一條對稱軸,建立不等式,計算范圍,即可.8、B【解析】
隨機模擬產(chǎn)生了18組隨機數(shù),其中第三次就停止摸球的隨機數(shù)有4個,由此可以估計,恰好第三次就停止摸球的概率.【詳解】隨機模擬產(chǎn)生了以下18組隨機數(shù):343432341342234142243331112342241244431233214344142134其中第三次就停止摸球的隨機數(shù)有:142,112,241,142,共4個,由此可以估計,恰好第三次就停止摸球的概率為p.故選:B.【點睛】本題考查概率的求法,考查列舉法等基礎(chǔ)知識,考查運算求解能力,考查函數(shù)與方程思想,是基礎(chǔ)題.9、D【解析】一組對邊平行就決定了共面;同一平面的兩條垂線互相平行,因而共面;這些直線都在同一個平面內(nèi)即直線的垂面;把書本的書脊垂直放在桌上就明確了10、A【解析】
由約束條件作出可行域,由圖得到最優(yōu)解,求出最優(yōu)解的坐標,數(shù)形結(jié)合得答案.【詳解】解:由變量x,y滿足約束條件作出可行域如圖,由圖可知,最優(yōu)解為A,聯(lián)立,解得A(﹣1,).∴z=2x﹣y的最小值為2×(﹣1).故選A.【點睛】本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、1.98.【解析】
本題考查通過統(tǒng)計數(shù)據(jù)進行概率的估計,采取估算法,利用概率思想解題.【詳解】由題意得,經(jīng)停該高鐵站的列車正點數(shù)約為,其中高鐵個數(shù)為11+21+11=41,所以該站所有高鐵平均正點率約為.【點睛】本題考點為概率統(tǒng)計,滲透了數(shù)據(jù)處理和數(shù)學運算素養(yǎng).側(cè)重統(tǒng)計數(shù)據(jù)的概率估算,難度不大.易忽視概率的估算值不是精確值而失誤,根據(jù)分類抽樣的統(tǒng)計數(shù)據(jù),估算出正點列車數(shù)量與列車總數(shù)的比值.12、①③④⑤【解析】
由異面直線的概念判斷①;利用線面垂直的判定與性質(zhì)判斷②;找出球心,由棱錐底面積與高為定值判斷③;設(shè),列出關(guān)于的函數(shù)關(guān)系式,結(jié)合其幾何意義,求出最小值判斷④;由面面成角的定義判斷⑤【詳解】對于①,因為直線經(jīng)過平面內(nèi)的點,而直線在平面內(nèi),且不過點,所以直線與直線是異面直線,故①正確;對于②,當點所在的位置滿足時,又,,平面,所以平面,又平面,所以,故②錯誤;對于③,由題意知,直三棱柱的外接球的球心是與的交點,則的面積為定值,由平面,所以點到平面的距離為定值,所以三棱錐的體積為定值,故③正確;對于④,設(shè),則,所以,由其幾何意義,即直角坐標平面內(nèi)動點與兩定點,距離和的最小值知,其最小值為,故④正確;對于⑤,由直棱柱可知,,,則即為平面與平面所成角,因為,,所以,故⑤正確;綜上,正確的有①③④⑤,故答案為:①③④⑤【點睛】本題考查異面直線的判定,考查面面成角,考查線線垂直的判定,考查轉(zhuǎn)化思想13、【解析】
該多面體為正八面體,將其轉(zhuǎn)化為兩個正四棱錐,通過計算兩個正四棱錐的體積計算出正八面體的體積.【詳解】以正方體所有面的中心為頂點的多面體為正八面體,也可以看作是兩個正四棱錐的組合體,每一個正四棱錐的側(cè)棱長與底面邊長均為.則其中一個正四棱錐的高為h.∴該多面體的體積V.故答案為:【點睛】本小題主要考查正八面體、正四棱錐體積的計算,屬于基礎(chǔ)題.14、【解析】
求出函數(shù)的定義域,結(jié)合復(fù)合函數(shù)求單調(diào)性的方法求解即可.【詳解】由,解得令,則函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增函數(shù)在定義域內(nèi)單調(diào)遞增函數(shù)的單調(diào)遞減區(qū)間是故答案為:【點睛】本題主要考查了復(fù)合函數(shù)的單調(diào)性,屬于中檔題.15、【解析】
根據(jù)偶次被開方數(shù)大于等于零,分母不為零,列出不等式組,解出即可.【詳解】依題意可得,,解得即,故函數(shù)的定義域為.故答案為:.【點睛】本題主要考查函數(shù)定義域的求法,涉及三角不等式的解法,屬于基礎(chǔ)題.16、①②④【解析】
根據(jù)新定義的直角距離,結(jié)合具體選項,進行逐一分析即可.【詳解】對①:因為是軸上的兩點,故,則,①正確;對②:根據(jù)定義因為,故,②正確;對③:根據(jù)定義,當且僅當時,取得最小值,故③錯誤;對④:因為,由不等式,即可得,故④正確.綜上正確的有①②④故答案為:①②④.【點睛】本題考查新定義問題,涉及同角三角函數(shù)關(guān)系,絕對值三角不等式,屬綜合題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)x2【解析】
(1)根據(jù)三角形周長為1,結(jié)合橢圓的定義可知,4a=8,利用e=ca=1-b2a2=12,即可求得a和b的值,求得橢圓方程;(2)分類討論,當直線斜率斜存在時,聯(lián)立y=kx+b【詳解】(1)由題意知,4a=1,則a=2,由橢圓離心率e=ca=∴橢圓C的方程x2(2)由題意,當直線AB的斜率不存在,此時可設(shè)A(x3,x3),B(x3,-x3).又A,B兩點在橢圓C上,∴x0∴點O到直線AB的距離d=12當直線AB的斜率存在時,設(shè)直線AB的方程為y=kx+b.設(shè)A(x1,y1),B(x2,y2)聯(lián)立方程y=kx+bx24+y23由已知△>3,x1+x2=-8kb3+4k2,x1x由OA⊥OB,則x1x2+y1y2=3,即x1x2+(kx1+b)(kx2+b)=3,整理得:(k2+1)x1x2+kb(x1+x2)+b2=3,∴(k∴7b2=12(k2+1),滿足△>3.∴點O到直線AB的距離d=b綜上可知:點O到直線AB的距離d=221【點睛】本題主要考查橢圓的定義及橢圓標準方程、圓錐曲線的定值問題以及點到直線的距離公式,屬于難題.探索圓錐曲線的定值問題常見方法有兩種:①從特殊入手,先根據(jù)特殊位置和數(shù)值求出定值,再證明這個值與變量無關(guān);②直接推理、計算,并在計算推理的過程中消去變量,從而得到定值.18、(1);(2)元;(3)【解析】
(1)設(shè)事件表示“乙生產(chǎn)一件產(chǎn)品,盈利不小于25元”,即該產(chǎn)品的測試指標不小于80,由此能求出乙生產(chǎn)一件產(chǎn)品,盈利不小于25元的概率.(2)由表格知甲生產(chǎn)的一等品、二等品、三等品比例為即,所以甲一天生產(chǎn)30件產(chǎn)品,其中一等品有3件,二等品有21件,三等品有6件;由表格知乙生產(chǎn)的一等品、二等品、三等品比例為,所以乙一天生產(chǎn)20件產(chǎn)品,其中一等品有6件,二等品有12件,三等品有2件,由此能求出甲、乙兩人一天共為企業(yè)創(chuàng)收1195元.(3)設(shè)甲測試指標為,的7件產(chǎn)品用,,,,,,表示,乙測試指標為,的7件產(chǎn)品用,表示,利用列舉法能求出兩件產(chǎn)品的測試指標差的絕對值大于10的概率.【詳解】(1)設(shè)事件表示“乙生產(chǎn)一件產(chǎn)品,盈利不小于元”,即該產(chǎn)品的測試指標不小于,則;(2)甲一天生產(chǎn)件產(chǎn)品,其中一等品有件;二等品有件;三等品有件;甲一天生產(chǎn)件產(chǎn)品,其中一等品有件;二等品有件;三等品有,即甲、乙兩人一天共為企業(yè)創(chuàng)收元;(3)設(shè)甲測試指標為的件產(chǎn)品用,,,,表示,乙測試指標為的件產(chǎn)品用,表示,用(,且)表示從件產(chǎn)品中選取件產(chǎn)品的一個結(jié)果.不同結(jié)果為,,,,,,,,,,,,,,,,,,,,,,共有36個不同結(jié)果.設(shè)事件表示“選取的兩件產(chǎn)品的測試指標差的絕對值大于”,即從甲、乙生產(chǎn)的產(chǎn)品中各取件產(chǎn)品,不同的結(jié)果為,,,,,,,,,,,,,,共有個不同結(jié)果.則.【點睛】本題主要考查古典概型概率的求法,即按照古典概型的概率計算公式分別求出基本事件總數(shù)以及有利事件數(shù)即可算出概率,以及列舉法和隨機抽樣的應(yīng)用.19、(1)眾數(shù)為75分,中位數(shù)為分;(2)76.2分【解析】
(1)由眾數(shù)的概念及頻率分布直方圖可求得眾數(shù),根據(jù)中位數(shù)的概念可求得中位數(shù);.(2)由平均數(shù)的概念和頻率直方圖可求得平均數(shù).【詳解】(1)由眾數(shù)的概念及頻率分布直方圖可知,這
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度zx鋼結(jié)構(gòu)防火涂料涂裝技術(shù)培訓承包協(xié)議3篇
- 二零二五年度XX投資型房屋買賣合同2篇
- 2024汽車購買協(xié)議之合同補充協(xié)議
- 成都文理學院《茶葉品鑒》2023-2024學年第一學期期末試卷
- 2024年船用閥門維修保養(yǎng)合同3篇
- 二零二五年化妝品OEM代工生產(chǎn)合作協(xié)議2篇
- 2025版生物質(zhì)發(fā)電廠建設(shè)項目施工合同6篇
- 2025年度民間個人借款合同模板(含房產(chǎn)抵押擔保)2篇
- 2025版礦業(yè)權(quán)抵押貸款合同標準范本3篇
- 2024年甲乙雙方關(guān)于云計算服務(wù)合同
- 《基層管理者職業(yè)素養(yǎng)與行為規(guī)范》考核試題及答案
- 椎間孔鏡治療腰椎間盤突出
- 2024年融媒體中心事業(yè)單位考試招考142人500題大全加解析答案
- 2024-2025學年 語文二年級上冊統(tǒng)編版期末測試卷(含答案)
- 期末測試題二(含答案)2024-2025學年譯林版七年級英語上冊
- 產(chǎn)品質(zhì)量知識培訓課件
- 乳腺旋切手術(shù)
- 醫(yī)護禮儀課件教學課件
- 2024-2030年中國商品混凝土行業(yè)產(chǎn)量預(yù)測分析投資戰(zhàn)略規(guī)劃研究報告
- 2023年中國奧特萊斯行業(yè)白皮書
- 2024年江蘇省學業(yè)水平合格性考試全真模擬語文試題(解析版)
評論
0/150
提交評論